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The main results obtained and published during the period covered by this report, August 1988

- July 1989, are described below together with references given to the corresponding

publication.

1. The Interacting Multiple Model Algorithm for Systemsmith Markovian Switching Coefficients,

(Henk A. Blom and Yaakov Bar-Shalom, IEEE Transactions on Automatic Control Vol. 33,

No. 8, August 1988)

An important problem in filtering for linear systems with Markovian switching coefficients

(dynamic multiple model systems) is the one of management of hypotheses, which is necessary

to limit the computational requirements. A novel approach to hypotheses merging has been

developed for this problem. The novelty lies in the timing of hypotheses merging. Wnen

applied to the problem of filtering for a linear system with Markovian coefficients this yields an

elegant way to derive the interacting multiple model (IMM) algorithm. Evaluation of the IMM

algorithm makes it clear that it performs very well at a relatively low computational load. These

results imply a significant change in the state of the art of approximate Bayesian filtering for

systems with Markovian coefficients.

2. Failure Detection Via Recursive Estimation for a Class of Semi-Markov Switching Systems,

(L. Campo, P. Mookerjee and Y. Bar-Shalom, Proceedings 1988 IEEE CDC, Austin, Texas)

An area of current interest is the estimation of the state of discrete-time stochastic systems with

parameters which may switch among a finite set of values. The parameter switching process of

interest is modeled by a class of semi-Markov chains. This class of processes is useful in that

it pertains to many areas of interests such as the failure detection problem, the target tracking

problem, socio-economic problems and in the problem of approximating nonlinear systems by

a set of linearized models. It is shown in this paper how the transition probabilities, which

go ern the model switching aveach time step, can be inferred via the evaluation of the

conditional distribution of the sojourn time. Following this, a recursive state estimation

algorithm for dynamic systems with noisy observations and changing structures, which uses

the conditional sojourn time dstribution, is derived and and applied to a failure detection

problem.



(AFREP) 900208 2

3. Distributed Adaptive Estimation with Probabilistic Data Association, (K.C. Chang and Y.

Bar-Shalom, Automatica, Vol. 25, No. 3, pp. 359-369, 1989)

The probabilistic data association filter (PDAF) estimates the state of a target in a cluttered

environment. This suboptimal Bayesian approach assumes that the exact target and

measurement models are known. However, in most practical applications, there are difficulties

in obtaining an exact mathematical model of the physical process. In this paper, the problem of

estimating target states wit uncertain measurement origins and uncertain system models in a

distributed manner is considered. First, a scheme is described for local processing, then the

fusion algorithm which combines the local processed results into a global one is derived. The

algorithm can be applied for tracking a maneuvering target in a cluttered and low detection

environment with a distributed sensor network.

4. An Adaptive Dual Controller for a MIMO-ARMA System, (P. Mookerjee and Y. Bar-Shalom,

IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989)

An explicit adaptive dual controller has been derived for a multiinput multioutput ARMA

system. The plant has constant but unknown parameters. The cautious controller with a

one-step horizon and a new dual controller with a two-step horizon are examined. In many

instances, the myopic cautious controller is seen to turn off and converges very slowly. The

dual controller modifies the cautious control design by numerator and denominator correction

terms which depend upon the sensitivity functions of the expected future cost and avoids the

turn-off and slow convergence. Monte-Carlo comparisons based on parametric and

nonparametric statistical analysis indicate the superiority of the dual controller over the cautious
controller.
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5. Time-Reversion of a Hybrid State Stochastic Difference System, (Henk A.P. Blom and

Yaakov Bar-Shalom, Proc. 1989 IEEE Intn'l. Conf. on Control & Applications, Jerusalem,

Israel, April 1989 to appear in IEEE Trans. info. Theory, 1990)

This paper develops the reversion in time of a stochastic difference equation in a hybrid space,

with a Markovian solution. The reversion is obtained by a martingale approach, which

previously -led to reverse time forms for stochastic equations with Gauss-Markov or diffusion

solutions. The reverse time equations follow from a particular non-canonical martingale

decomposition, while thereverse time equations for Gauss-Markov and diffusion solutions

followed from the canonical nartingale decomposition. The need for the non-canonical

decomposition stems from the hybrid state space-situation. The non-Gaussian discrete time

situation leads to reverse time equations that incorporate a Bayesian estimation step.

6. A New Controller for Discrete-Time Stochastic Systems with Markovian Jump Parameters, (L.
Campo and Y. Bar-Shalom, 11 th IFAC World Congress, Tallinn, USSR, Aug. 1990

A realistic stochastic control problem for hybrid systems with Markovian jump parameters may

have the switching parameters in both the state and measurement equations. Furthermore, both

the system state and the jump states may not be perfectly observed. Prior to this work the only

existing implementable controller for this problem was based upon a heuristic multiple model

partitioning (MMP) and hypothesis pruning. In this paper a stochastic control algorithm for

stochastic systems with Markovian jump parameters was developed. The control algorithm is

derived through the use of stochastic dynamic progamming and is designed to be used for

realistic stochastic control problems, i.e., with noisy state obeservations. The state estimation

and model identification is done-via the recently developed Interacting Multiple Model

algorithm. Simulation results show that a substantial reduction in cost can be obtained by this

new control algorithm over the MMP scheme.
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7. From Piecewise Deterministic To Piecewise Diffusion Markov Processes, (Henk A.P. Blom,
Eroc. IEEE CDC 1988)

Piecewise Deterministic (PD) Markov processes form a remarkable class of hybrid state

processes because, in contrast to most other hybrid state processes, they include a jump

reflecting boundary and exclude diffusion. As such, they cover a wide variety of impulsively

or singularly controlled non-diffusion processes. Because PD processes are defined in a

pathwise way, they provide a framework to study the control of noP-diffusion processes along

same lines as that of diffusions. An important generalization is to include diffusion in PD

processes, but, as pointed out by Davis, combining diffusion with a jump reflecting boundary

seems not possible within the present definition of PD processes. This paper presents PD
processes as pathwise unique solutions of an It6 stochastic differential equation (SDE), driven

by a Poisson random measure. Since such an SDE permits the inclusion of diffusion, this

approach leads to a large variety of piecewise diffusion Markov processes, represented by

pathwise unique SDE solutions.

8. Control of Discrete-Time Hybrid Stochastic Systems (L. Campo and Y. Bar-Shalom, to appear

in Proc. 1990 ACC, under review for IEEE T-AC).

A realistic stochastic control problem for hybrid systems with Markovian jump parameters can

have the switching parameters in both the state and measureme.-t equations. Furthermore, both

the system state and the jump states are, in general, not perfectly observed. Currently there are

only two existing controllers for this problem. One is based upon a heuristic multiple model

partitioning (MMP) and hypothesis pruning. The other utilizes the entire future tree of models,

and is called the Full-Tree (FT) controller. The-performance of the latter is superior to the

former and their complexities are similar. In this paper we present a new stochastic control

algorithm for stochastic systems with Markovian jump parameters. This control algorithm is

derived-through the use of stochastic dynamic programming and is designed to be used for

realistic stochastic control problems, i.e., with noisy state observations. This new scheme,

which is based upon the interaction of r (the number of mdels) model-conditioned Riccati

equations, has a natural parallelism and is straightforward to implement. The state estimation

and model identification is done via the recently developed Interacting Multiple Model

algorithm. Simulation results show that a substantial reduction in cost can be obtained by this

new control algorithm over the MMP scheme. Furthermore, the performance of the new

algorithm is-shown to be practically the same as that of the FT scheme even though the new

scheme, which has a fixed amount of computations at each step of the recursion, is much

simpler to implement than both the MMP and FT algorithms.
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9. Discrete Time Point Process Filter for Image Based Target Mode Estimation (C. Yang and Y.

Bar-Shalom, to be submitted to 1990 IEEE CDC).

The performance of tracking and prediction systems of a maneuvering target can be improved

by using additional (and unconventional) measurements of its apparent modes, typically

provided by an imaging sensor. A model for the image-based observation channel for target

mode estimation in discrete time is presented in this paper. A multidimensional point process

filter is obtained by making use of the discrete time point process theory and its utilization is

illustrated through simulation examples.

10. A New Approximation for the Partially Observed Jump Linear Quadratic Problem (C. Yang

and M. Mariton, submitted to Int'l. Journal of Systems Science, Oct. 1989).

We consider the Jump Linear Quadratic Problem where linear state dynamics are made

contingent upon the Markovian transition of a regime variable. It is desired to regulate the

state while minimizing a quadratic performance index. In the case of partial observations the

exact solution has proved to be elusive and, in this paper, we present a new approximation

based on the optimal solution of an averaged version of the original problem.'
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The Interacting Multiple Model Algorithm for Systems with

Markovian Switching Coefficients

Henk A. P. Blom

Yaakov Bar-Shalom

Reprinted from
IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Vol. 33, No. 8, August 1988
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merging. Whea applied io the problem offilteriftg for a l116eA ytens with
hMarkovian co.fidceum this yields; at eegs~t waY to dative the Interacting
multiple modtl (IMM) algorithm;- Eyauatlom -of the I1MM- olgoritknm
makes kt deartbat It ptrforwvMr welt at a relatively low Conputational
load. Tltesceresulta Imply a algalfleaut chag In the 9(20e-of the art of
approximate Bayesian fllering for systems vrith Martcovlan cooffieeu.

I.ANTRODUCnON4

In this contribution we present a novel approach to the problem of
filtering for a linear system with Mairkovian coefficients

x,= a(e,)x11_ + b($,)W,()

with obvervations

yj= h(8,)x,+g(8)v, (2)

8, is a finite state Markov chain taking values in (1, - , N,' according to
a transition probability matrix H, and w,, v, are mutually independent
white Gaussian processes. The exact filter consists of a growing number
of linea Gaussian hypotheses, with the growth being exponential with the
time. Obviously, for filtering- we need recursive algorithms whose
complexity does not grow with time. With this, the main problem is to
avoid the exponential growth of the number of Gaussian hypotheses in an
efficient way.

This hypothese management problem is also known for several other
filtering situations f 101, [5), [6], [9], and [4). All these problems have
stimulated during the last two decades the development of a large variety
of approximation methods. For our problem the majority of these are
techniques that reduce the number of Gaussian hypotheses, by pruning
and/or merging of hypotheses. Well-known examples of this approach are
the detection estimation (DE) algorithms and the generalized pseudo
Bayes (GPB) algorithms. For overviews and comparisons see [1, [7],
(121, and (17]. None of the algorithms discussed appeared to have good
performance at modest computational load. Because of that, othier
approaches have been also developed, mainiy by way of approximating
the model -(1), (2). Examples are the modified multiple model (MM)
algorithms [201, [7], the modified gain extended Kalmant (MGEK) filter of
Song and Speyer [131, [71, and residual based methods (191, (21. These
algorithms, however, also lack good performance at modest computa-
tional load in too many situations. In view of this unsatisfactory situation
and the practical importance of better solutions, the filtering problem for
the class of systems (1), (2) needed further study.

One item that has not received mtch attention in the past is the timning of
hypotheses reduction. It is common practice to reduce the number of
Gaussian hypotheses immediately after a measurement update. IndeeC, on
first sight there does not seem to b -e a better moment. However, in two
recent publications [31, [11, ths point has been exploited to-develop,
respectively, the so-called IMM (interacting multiple model) and AFMM

The Interacting Multiple Model Algorithm for Systems (adaptive forgetting through multiple models) algorithms. The latter
exploits pruning to reduce the number of hypothese, while the 1MMwith Markovinn Switching Coefficients exploits merging. The 1MM algorithm was the reason for a further
evaluation of the timing of hypothessreduction. A novel approach to

HENK A. P. BLOM AND YAAKOV BAR-SHALOM hypotheses merging is presented for a dynamic MM situation, which leads
to an elegant derivation of the 1MM algorithm. Next Monte Cado

Abstract-A. Important p blew In filtering for Hum systems with simulations are presented to judge the state of the art in MM filtering after
Morkoviam switching coeffldievls (dynamic maltiple model systems) Is the the introduction of the IMM algorithm.
one of management of hypotheses, which Ii netessary to litmit the
compitatlonitl requiremenits. A novel approach to hypotheses merging Is 1H. TiMING OF HYPOTHESES REDUCTION
presented for this problem, The novelty Nie In the timing of hypotheses

To show the possibilities of timing the hypothesis reduction, we start
Manuscript receivedJune 24, 1917; revised October 21, 1987. This paper is based on a with a filter cycle fromt one measurement update up to and including the

Prior submission of October 20, 1986. The work of die second author was suppotd by next measurement Update. For this, we take a cycle of recursions for the
thi Force Office of SCciImifc RasmCII under Cht 54"112. evolution of t conditional probability measure of our hybrid state
H. A. P. Bloam is with dhe Natioal Aerospace aborav"r' NLR, Amtrdm I' Markov process (x,, 0,). This cycle reads as follows:

Netherlands.
Y. Bar.shatoen is with the univeusity of coanecticut, Sgom rrC 06268. Mb
IEEE Loi -Number 8821022. p(9,*.Ij Y,.I- P~e, Y' 1) (3)

0018-9286/88/0800-080$01.00 @ 1988 IEEE -
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if P{8,I Y,-.i Oprune hypothesis 6,, 111. THE IMM ALGOfiTHMA

pIx,-11e,-1, Yi11- pMx,1 I'-ee. Y,.. 1  (4) The IMM algorithm cycle con~sists of the following four steps, of which
Eveoeskan the first three steps are illustrated in Fig. 1.

pIx,1 (6, Y,.. 1 ] P[,0 1',-, (3) 1) Starting with the Nweights A (t - 1), the N reaisj (I - 1) and
Bayes the N associated covariances A,(t - V', one computes the mixed initial

P~ej A1  ~ {9I ,}(6) condition for the filter matched to 6, '=i, according to the following

p[X,I6,, Y,..1  Bayes pIx,jG, Y11. (7) equations:

For output purposes, we can use the law of total probability AM Hjbj(t- 1), if p,(tO=0 prune hypothesis i, (12)

p~, YP~ pxI6 ,YJP{6,=iI Y,). (8) .t(-l= ,~~t )~t )ft,(13)

Let us take a closer look at the derivation of the above cycle. As u, and w, A(tl)= 1) ~ (-l[-t )+[~Q ).'t 11.]T/5(
are mutually independent, the-Bayes formula, which represis (6) and
(7), follows easily from (2). From the evolution of system (1)'follows (5).
The Chapman-Kolmogorov equation for the Markov chai 6, (14)

P6, = i Y_ )= HjP{Ou I =j IY,_ 1) (9) 2) Each of the N pairs R'(t 1 ), AI(t 1 ) is used as input to a
JKalman tilter matched toO0, =i. Time-extrapolation yields, £,(t), Aith,

whic reresets 3),can e sen s a mixng. To erie a and then, measurement updating yields, tj(t), Aj(t).
whic reresnts(3) ca besee asa "ixig."To erie a 3) The N weights poi(t) are updated from the innovations of the N

representation of (4) we first introduce the following equation on the basis Kalman filters,
of the law of total probability:

p~xi1,=, ,. 1]~ p~xiI, 1 j,6,iY~A(t)=c - AIJQ,(t) 111 JI~) 2 eXp 1-/2 01(t) Q- 1(),(1)) (15)

I with c denoting a normalizing constant

P(,i-.j16,=i, Y-d)). (10) 0,(t)=y,-h(i)2je(:) (16)

As 0, is independent of x,. 1 if 8,_ I is known, we easily obtain Q(=h(i)A,(t)h r(i) +g(i)g r(i). (17)

p~xi1,1 -j eiY,-1'=p[x(-,iI6, 1  Jy 11  4) For output purpose only, , and A, are computed according to

Substitution of this and of the following: 2,~3Q2()(18)

in (10) yields the desired . io oftasto94 , = AMt)AW() + [2,(t _-R1][. *J T) (19)

p[X,..0,i dO , 1 ii I =if 4'-1 I Only step 1) is typical for the 1MM algorithm. Specifically, the mixing
I represented by (13) and (14) and by the interaction box in Fig. 1, cannot

p~xI8,.p =, Y 11/PO,=( Y,). II) be found in the GPB algorithms. This is the key of the novel approach to
- the timing of -fixed depth hypotheses merging that yields the 1MM

Notice that the mixing of the deruities in (11) is explicitly related to the algorithm. We give a derivation of the key step 1).
above-mentioned Markov properties of 6, and the conditional indepen- Application of fixed depth merging wit.h d =I implies that
dence of 6, and x,- t, given 01- 1. According to the above filtering cycle
there are at any moment in time N -densities on R11 and N scalars. The pjx,i168,i=i, Y,_iJjN(Ri(1-0IA 1Q-)).
densities on R11 are rarely Gaussian. Even if p~xol 1'ol is Gaussian, then
pfx,18, =is YJ is in general a sum of N'- weighted Gaussians Substitution of this in (11) immediately yields (13) and (14), with
(Gaussian mixture). Explicit recursions for these N1 individual Gaussians
and their weights can simply be obtained from the above filter cycle. vo(.. I) A ~,1,i ,i
Obviously, the N times increase of the numbear of Gaussians during each
filter cycle is caused by (4) only. and

In the sequence of elementary transitions, (3) through (7), we can apply
a hypotheses reduction either after (4), after (5), or after (7). We-feviewA(,-)
these reduction timing possibilities for the f ixed depth merging hypotheses
reduction. This-fixed depth merging approach- implies that the Gaussan the associated covariance. Fially, we introduce the-approximation.
hypotheses, for which the Markov chai n paths are equivalent during the
recent past of some fixed depth are merged to one moment-matchedpxf=iYi1N2 - ,A(:I)
Gaussian hypothesis. The degrees of freedom in applying this fixed depth
merging approach are the choice of the depth, d (?: l),-and the moment of which guarantees that all subsequent 1MM steps fit correctly.
application. If the application is immediately after each, measurement Remark.- The 1MM can be approximated by the GPBI algorithm by
update pass (7), it yields the GPB (4 + 1) algorithms 1141, ( 161. In the replacinge2A1 - I) and A,(1 - I) in step. 1) bye2, Iand A,-,. Together
next secti on we derive the 1MM algorithm by- applyirng Zhe fixed depth with (12) this approximates (13) and (14) in step 1) by, .91(1 - 1)
merging approach with depth, d = , aftereachpamsof (4). It can easily and 41(1 - 1) =A,-,. Thou equations are equivalent to (13)and (14) if.

-'be verified that all other timing possibilities yield disguised versions of each compornnt of Hequals I/IN, which implies that 6, is a sequence of
1MM and GPB algorithms.- Merging -after (5) with d = I yields a mutually independent stochastic variables. The latter is hardly ever the
disguised-but more complex 1MM-algorithm. Merging either after (4) or case and We conclude that the reduction of the 1MM to GPBI leads to a
after (5) with d 2: 2 yield-- a disguised but more complex GPBd significant performance degradation. Obviously, the computational loads
algorithm. of IMM and GPB I are almost equivalent.
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TABLE I

~1.A ti-) XN A~t- ~ l-1)THE PARAMETERS OF THE 19 CASES OF WESTWOOD (181
CASE 1- H-VALUES 0-OEPENOENT VALUES

Fitf1 40 20 .996,190 1.0 1.11 1.0
2 40 20 .995,1990 .5 1.0 .5

ltf 3 40 20 M99,.99 .1 1.0 5.0
0 4 200 100 .995,.990 .1 1.0 5.0

KoIman Kuiman 5 40 20 .995,.90 8.0 1.0 1.0
8R 40 20 .995,.990 1.0 1.0 .3

0- -N 7 40 20 .996,.900 .5 1.0 2.0
8 40 20 .995,350 1.0 1.0 .6
9 40 20 .995 2.0 1.0,95 .51NtAl lilo Alhi Tot1 40 20 .995 1.0 1.0,.80 .2

---- 11 40 20 .995 .5 1.0,.80 .81 2 4 2 .995 .5 2.0,.80 .8
Fig. 1. The 1MM algorithm. 13 200 100 .995 .5 1.0',80 .8

14 40 20 995 .1.5.0 1.0 1.0
IV. PERFORMANCE OF THE 1MM ALGORITHM Is 40 20- .995 1.0 1.0 .1.6.0

16 10 2 .95 Is 1.0.0.0 1.0,2.0
17 200 5 .950,0.0 1.0 1.0 1.0

Presently a comparison of the different filtering algorithms for systems 18 50 5 .950,1.2 1.0 1.0 1.0
with Markovian coefficients with respect to their performance is 19 10 2 .95 .5 1.0 1.0,40.0
hampered by the analytical complexity of the problem 1161, [15]. Because
of this, such comparisons necessarily rely on Monte Carlo simfulatons for
s-lecific examples. For our simulated examples we used the set of 19 cases
that have been developed by Westwood (181. To make the comparison 3

more precise, we specify these cases and summarize the observed
performance results. In all 19 cases both x, and y, are scalar processes, 3-
which satisfy x, =a(9,)x,.., + b(O,).w, .1- u(1) and y, = h(O,)x, +
g(O,)u,, with 0,J)l - 10, 1}, U(t) = 10. cos (27cx1O), X0 a Gaussian 26

variable with expectation 10 and variance 10, P{8o = l)} P{0o = 0)
= 1/2, while Hcoo = (I - I /To) and H, l (I - Il/r,). The parameters
a, Ill h, g and the average sojourn times ra and rl of these 19 cases are
given in Table 1.

The results of Westwood 1181 show that, in all 19 cases the differences V
in performance-of the GPB2 and the GPIB21algorithrns are negligible,
while-in only seven cases (5, 6, 8, 16, 17, 18, 19) the differences in
performance-of the GPBI and the GPB2 algorithmls are negligible. To our
present comparison the other' 12 cases (1, 2, 3,-4, 7, 9, 10. 11.,12, 13, 14, 0 i I i I
15) are interesting. For each ofthese 12 cases we simulated the GPBI, the
GPBZ;1 and -the 1MM algorithm and r-an Monte Carlo simulations, Fig. 2. muserror for case 7, illustrative ofthe six cases (1,2,7. 12.,14.15) where both

-consisting of 100 runs from i = 0 to t = -100. For simplicity of 1MM and GPB2 perform slightly better than GPB I.
interpretation of the results we used on-e-fixed Path of 6 during all runs: 0
= O cn the time interval (0.,301, 6 = I-on the interval [31 ,-601, and 8 = 0 ~

on-the intervad [61, 100].
The restst-of our simulations-for the -12 interesting cases are as ~ ~

-follows. In six-cases (1.2, 7, 12,4-4, 15) both-the 1MM and the GPB2
pdtfornied slightly better than the-GPBl, while-the-IMM amndie GP82
performed equally- welt'. For typical results, see-ig. 2. In-the other-six
cas- bt h M and theG(PH2-parformed significantly better tha the
GPBI. For typicael results sceeFigs. 3 arid 4, Of these six cases the 1MM
and-the GPB2-perfo.-rnied four times equally well (cases 3. 4, 11, and 13) t

and two tinies-significantly diffet~nt (cases-9 arid 10).
-On- the oais of dtse--sintlations-we can conclude that the 1MM

performs- almost as-well as~the GPB2, while- its; computational load is A.
about that a, GPBI We c-an further differentiate this overall conclusion.

& Increasing th. parmeters To-and rt increases the difference ir.
performarce betweenr GPR I a&d 0PB2, but not between 1MM and GPB2.

Ifa is being switched, thenthe IMM performs as wall asthe GPB, 'a IIIt,
while the GPBI sometimes 'Stays slgnificantly behind.NO O 30 4

*If the white noise gains, b or j, are being switched, then the IMM Pig. 3. rms errfor cam 3. illustrative o(the four Cases (3.4,11i, 23) where both 1MM
performs as well as the GPB2, while the GPBI sometimes stays and GPE12 perform better than GPBI, while 1MM and GPR2 perform equally well.
significantly behind.

a If only h is being switched, then in some case the 1MM, and everi for cases I1, 3, and 4 the GPB2 and the 1MM algorithm performed equally
more often, the OPBl tend tSd~ivergo while the GPB2 works well, well, one can conlclude that the MM, the modified MM, the MGEK, the

Another interesting question Is how the 1MM compares to the modified MGEK with "postprocessor," and the GPBI are in all 19 case
MM algorithm and) the MGEK filter. Apart from the GPB algorithtns, outperformed by the 1MM algorithm.
Westwood [181 also evaluated four more filters, the MM, the modified On the basis of these comparisons one can conclud, that for practical
MM, the MGEK, arW a MOEK with a "postprocessor. " For the 19 case filtering applications with N = 2, the 1MM algorithm is the best first
there was only one algorithm that outperformed the GPB I algorithm in choice. As the 1MM algorithm has been developed on the basis of some
some cases. It was the MGEK filter in the cases 1, 3, and 4. H-e also found general hypothees reduction principles, which ame N-invariant, one can
that the mask filter performied in thee vasft marginally or significantly reasonably expect that this is also true for larger N. But it is utnlikely that
less goo dian the GPB2 algorithm. As the above experiments showed that the 1MM performs in all-applicaflons aihnost as good as the exact filter.
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[16] J. L. Weiss, "A comparison of finite filtering methods for stms directed
processa," Mastr's thesis, Charles Stark Draper Lab., Mau. inst. Technol.,

.Rep. CSDL-T-819, 1983.
o,,/ 171 J. L. Weiss, T. N. Upadbyay, and R. Te~nney, "Finite computable filters for linear

systems subject to time-varying model uncertainty," in Proc. NAECON, 1983,
N, pp. 349-355.

"f 181 H. K. Westwood, "Filtering algodithms for the linear estimation problem with
I / :tswitching parameters." M.S. thesis, Univ. of Texns at Austin, 1984.

I.j (19] A. S. Willsky. "Detection of abrupt changes in dynamic systems." Rep. MIT.
LIDS-P-1351. 1984.

[20] A. S. Willsky, E. Y. Chow, S. B. Gershwin, C. S. Greene, P. K. Houpt, and A.
L. Kurkjian. "Dynamic model-baed techniques for the detection of incidents on
freeways," IEEE Trans. Automat. Contr., vol. 25. pp. 347-360, 1980.

[21] J. W. Wocds, S. Dravida, and R. Medlavills, "Image estimation using doubly
Ih- stochastic Gaussian random field models," IEEE Trans. Pattern Anal. Machine

Intell., vol. PAMI.9, pp. 245-253, 1987.

l , I I I.,

Fig. 4. mu error for case 9, ilustrative of the two cases (9and 0) where IMM
performs better than GPBI, but slightly worse than GPB2 (in thee two Cases only h
jun.pu).

Therefore, if the IMM performs not well enough in a particular
application one should consider using a suitable GPB (:2) or DE
algorithm [14], or one might try to design a better algorithm by using
adaptive merging techniques (16]. The DE algorithm might possibly be
..nproved by the novel timing of hypotheses reduction [1]. If for a
particular application the performance of the selected algorithm has a too
high computational load, then it is best to try to exploit some geometrical
structure of the problem considered [2], [11].

In situations where estimation has to be done outside some time-critical
control loop, it is usually preferable to use a smoothing algorithm instead
of a filtering algorithm [8), [141, (211. In view of the above filtering
results, this suggests that the ideas that underly the IMM algorithm can be
exploited to develop better smoothing algorithms.
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Failure Detection Via Recursive Estimation for a Class of
Semi-Markoy Switching Systems

L. Campo', P. Mookerjee 2, and Y. Bar-Shalom'

Abstract state estimation in a multiple model environment is a
function of the elemental ("model-matched") state

An area of current Interest is the estimation of estimates obtained via estimators tuned to all
the state of discrete-time stochastic systems with possible parameter histories. Thus, with time, the
parameters which may switch among a finite set or estimator must keep track of an exponentially growing

number of parameter history hypotheses. Even In thevalues. The parameter switching process of interest case of Markov switching the estimation algorithm
is modeled by a class of semi-Markov chains. This requires exponentially growing memory (TI, T21.
class of processes is useful in that it pertains to Suboptimal. algorithms like the Generalized
many areas of Interests such is the failure detection Pseudo-0ayeslan Algorithm (GPO) JAI. Cl, T21 and the
problem, the target trackiag problem, socio-economic Interacting Multiple-Model Algorithm (IMM) (82. 83.
problems and In the problem of approximating 04) are viable approaches to obtain a real-time
nonlinear systems by a set of linearized models. It implementable estimatinn alRorithm. These algorithm;
is shown in this paper how the transition rely on different hyopothesis merging techniques to
probabilities, which govern the model switching at limit the memory and computational requirements (14,
each time step, can be inferred via the evaluation of In S2.C21 a semi-Markov switching problem was
the conditional -distribution of the sojourn time. considered, but the jumps were assumed to be
Following this, a recursive state estimation pertectly observed. In 119) an estimation scheme tar
algorithm for dynamic systems wiih noisy observations semi-Markov processes was developed based upon the
and changing structures, which uses the conditional
sojourn time distribution, is derived, detection-estimation al*gorithm (IEA). This approach

is obtained by retaining a certain number of most

. Introduction likely parameter history hypotheses. The estimation
schemes based upon the OEA (which discards all but a

In this paper we are concerned with failure number of most likely history hypotheses) and the GPO
detection via recursive estimation of parameters in or IMM (which use hypothesis merging) algorithms
discrete-time dynamic systems. The topic of interest represent different philosophies of algorithm
is stochastic systems with abruptly changing
parameters ie., model jumps. The recursive state design. Ve present an example comparing the two
estimation algorithm for this problem developed in methods for a particular state estimation prodllem
this paper provides the conditional model later in this paper.
probabilities used for detecting the change in system The problem is formulated in Section 2. . In
parameters which signify component failures. Section 3 the sojourn time conditional probability

The abruptly changing parameters, which switch mass tunctions and the conditional transition
among a finite set o values, are modeled as a Markov probabilities which we derived In [Mial, are given
or a semi-Markov chain with known transition
statistics [M2,M3,MS-M8,GI). Although the Idea of here for clarity and ease of reference. The
seml-Markov chains is appropriate for the model inclusion of Section 4, the state estimation
concerned, the analysis presented in the above is algorithm which was developed in [Mib], is for the
actually only for Markov chains (since the transition sake of completeness. -In Section 5 simulations are
probabilities were assumed fixed and the transitions presented. Preliminary results on this problem were
depended only on the latest state - see Eq. (8) in
[M2)), The process considered in this paper is of presented in (Mta, Mib,.
the semil-Markov type and pertains to many areas of 2. Formulation of the problem
Interest. A failure In a component of a dynamical
system can be represented by a sudden change in the The system is modeled by the equations
systems parameters [0S,SI,WII. Also, a repair to a x(k) - F[li(k)j x(k-1) * v(k-i, M(k)] (2.1)
system represents a change In the parameters (051. zWk] - H(M(k)) x(k) - wjk,M(k)J (2.2)
Other areas that this class of processes pertains to where K(k) denotes the model "'at time k- - in effect
are the target tracking problem -(all, socio-economic during the sampling period ending at k. The process
problems (G21 and the technique of- approximating and measurement noise sequences, v(k) and w(k), are
grossly nonlinear systems by a set o linearized- white and niutually uncorrelated.
models (M4Vi,V2]. The model at time k is assumed to be among the

The first treatment of estimation In a switching possible r models
environment was in (All where the means and M(k) (,...,r) (2.3)
covarlances of the process and measurement noises For example
experienced Jumps. As Indicated in (CI], the optimum F(M(kJj - FJ (2.4)

v(k-l,M(k)-j) - l(uj, O ]  (2.5
I. University of Connecticut i.e., the structure of the system and/or the

Starrs, CT- 06268 statistics of the noises might be different from
Supported by AFOSR Grant 84-0112 model to model. The mean u, of the noise can

2. Vfllanova University model a maneuver or a system failure as a
.VllanovaP Univ0rsiy deterministic Input.
Villanova, PA 19095 The model switching process to be considered hereSuported by the Grant from the Vice-President for Is o the semi-Markov type. The process is specified
Academic Affairs Office. Villanova University and by a family of transition matrices p,(1 TI).
AFOSR Grant 84-0112. ie., it is a "sojourn-tlme-dependent MarKov" (STOM)



*chain, which belongs to the scml-Markov ciass. The (31i I is the sojourn -time while the -arguiment- of
specification -of the STOII chain Is moure closely Pl-eie:abv stecret;la
related to~physlca; models- because-.l, -does not. have Teco~fndionl robbisit the functtion e3
the artificial rest-rit at the- sojourn tfie counting The -oidtimel I prbailt -m -ats -ntime (,Is
of the semi-Markov -process for Virtual trifnsitlo~is, ft~sjuntm nsae--a ieki
and can capture Important -features Iln-Arany realistic giVn -by the f ollowing -expressions

situations. V
For the class of semi-Markov chains governing the bit -a(kl

evolution at the system's model-considered here, we I" f(k-sl " S- pll -ml
need the pdf or the sojourn time conditioned on the 9'ks S' Ir~ S) 4 b
observations, to Infer the transition probabilities. s2..k(1
The conditional transition probabilities based on s2,J(3

noisy observations or the system's state are obtained g (k~ll- L- b(km(31
in the ne)xt section. I in:) i~~) 39

'A semi-Markov (SiM chain 1111. 112, -R) is Cxpressions (3.61-03.8) are proven by induction in

character ized by a f ixe-d matrix of transition [ll) The "otations a1 and -b, -used above are
probabilities (p. I and a matrix of sojourn defined below

time probability d ensity functions The probability that the process will stay S

([.17.Ti11: which are functions of the time steps- In th -e same state I as it is at time

current state I as well as the destination state I- k-s is. conditioned on the information at k-s.
of the transition, In a SM chain first the given by -the exre-Ssion
destination. of the jump Is chosen according to b,(k.s) P(M(k)=i.. .M(k-S*0=ilM(k-S)1.izt-)
(p. 1 and then the time after which the jump n'-* ''1

takes place (i.e.. the sojourn time) is chosen 11 flp~ij) gil"'(n s~i,.k 39

according to ( fi 1( T)j. In this model the Conditioned on the available information
process can undergo a virtual transition (ie. jump 2k-' at time k-s. the joint probability of
"in place" If j-IIh however, in this case, the the process residing in' the same state I for the
sojourn time counting is still restarted even though next s itime steps is denoted as
the system has been in state i for some time kS
3. Sojourn Time- Probability Mass Functions and Mik-s'i)-)-jllZ_'

Conditional Transition Probabilities = P(il(kl=i. H(k-s*Il):iIM(k-s)=j.Zk~PMks~l~

The process 1(k). !0l which represents _I4E(i)i,.~-~)iHks-~
the system model, can exist in one of r =b,(k.slIi(k-i*P(kii..M-5)iMk)iZ
possible states. The current probabilities of
transition for the STOM process (chain) are functions -p lk-s)
of the sojourn time r and are defined as bi(k~s) 1i i(k-s)

pil r) - P(M(kjIM(k-lki,7(k-117T) k3.il

where Tr(k-l) is the sojourn time in state i at + X 1 P(m(klii.. ,M(k-s~l)=iIM(k-s)=j.Ti(k-sl~n.Z2
time k-I. It is assumed that at k-ti the sojourn n:1

time (in whatever state the system model is) is ) '-5( n) p (k-si
iziI . Thus the values T can take are from II)

to the maximum, which at time k-I is then k .b,( k.s I Vi(k-si
Let z~ll be a -noisy measurement of the state of r 1-

the dynamic system whose model undergoes transitions + p (njp.(iIp. (2)..p(S-., p ni (k-s I
according to the above described STOM process Based Y 11:J 1 ii I

on t -he available Information b(~ j(k
Z' (Z ( K) Lthe orobabi1lty ofI t h e -i s

model- process being in' stat. A , denoted as + pnj E.ig~n z 1k-si

ik) . Is defined as s-],.k 13.10)
Pi.(k)StP(M(k )=iiZk) iI r(312) 4. The state estimation algorithm

The conditional pint of the sojourn time in state
11, k) 1 bseton te aailble nfomatin Z atAs indicated in Sec. 1, the optimal estimator for

11(k-i asedon he vaiibleinfrmaton atlinear systems with Markov model jumps requires an-
timek Isexponentially Increasing memory. Among the

I 1L.1suboptimal approaches discussed, it appears that the
-P(M1k-l)-I,.Mtik-1'.li-I,M(k-1iiilM(k)-i.Z ') (3.3) IMM Is the most cost-effective in Implementation

where the perfect knowledge-of the state 11(k OBIL In view of this, the state estimation for a
allows one to go down to one Index less In the linear system with sojlour n-ti me-dependent. transition
conditioning. i. e.. Z'-'. probabilities Is developed In the sequel based on the

Following (3.1) the- conditional probability of IMM approach.
transition from I to j at time-k-I given the In this approach, at time k the state
observations Z"~ Is, In terms of (3 31, estimation IS computed under each possible model

hypothesis using r filters (for the r possible
p1 .(-I) P(Mk~uIM~kl)I.ki)models), with each filter using a different

combination of the previous model -conditioned
X P(~kiJiM~-i)i~ik-iir.Z' 1 )estimates. Each model transition probability Is a

-P(7~k--TjMk-I-IZ_')known function of-the sojourn-time given by (3-i).,
it Each model has a sojourn time IMk In state

P p1 (fl g!-(,ri (3.5) which is, however, not-known. The filter has access
Noethtte ruen f p11eindi only to the observations from which the conditionalNoteLhr31t he rgumnt r p~' dfine Inpmf of the sojourn time (3.6)-(3.8) can be obtained,



this in turn Is to be used in calculation of the where the notations from ( .41 and (3.S) were used
conditional transition probabvilities (3.5). and

To find the conditional pdf of the state of tile (k-Ilk-1) 2Elxtk-I)lM(k-I).i,Z ' (K8]
dynamic system described by (2.11-(2.3) the total is the model-conditioned state estimate at time k-I.
probability theorem-is used as follows: The expression of 0.. for the STOM case

PpX(k)1xpX(k)IM(k)-jz(k),Z ' I ] P(M(k)lilZt) using terms involving sojourn time probabilities is
ir ) the one obtained In (3.5). The covariance

Zp~x(k)lH(k)j,z(k,Z*l Ii(k} (.11 corresponding to (4.6) is

i.e., r filters running in -parall'l. The P Ilk-ik-l) a ZPi(k-Ik-i)(P'(k-ilk-Il

model-conditioned posterior pdf or the state, can be "=

rewritten as (with the irrelevant conditioing on l '(k-ilk-i)- °i(k-IIk-il

Z '  in the numerator omitted) "[Xlk-llk-l)- i (k-Ilk-i))') (4.9)

Pt x[ k-fl1 (-k ) - J.z ( k ),Z't I The estimate (1.6) and covariance (4.9) are usedid{ z~k)lM(k)si,x(k)]
piz k)1Mk=JZ .t] p(xlk)l(klj,Z' 1]  (U'.2) as input to a standard Kalman filter matched to
plz(k)If(k)-jZ 'J M(k)j to yield the model-conditioned estimate

reflecting one cycle of the state estimation filter 1(klk) and its covariance Pi(klk).
matched to model -I starting with the prior, which The likelihood functions corresponding to the r
is tht" !ast term above. The total probability
theoreij.,'Is-now applied to-this prior. yieding filters are computed as

_p[xIkIIM(k J;jZkL Aik) -p(z(k)lM(k)=j,Z '-I

,, px(k}lHlk)-,(kl iZ.,p( l=il(k =(k-ilk-t)I (i10)
hIl where the past data have been replaced by (4.6) and

p.(k)IM(k),,J.pk-i).Z k-ilk-I) ('1.3) (4.8) according to the key step of the oMM. The
wher model probabilities (4.1) are updated as follows:

where M (k- P(M(kijlZ") -LA (k i(k-i) i(k-) Ill
( 4(k) 1:P(M(k)-jlZ1 (4.41 c

where the conditional transition probabilities,and , ,i(k-ijk-I) _ P(.(k-)-il(k.-j,Z '  K . are as given in (4.8).
- LIiK~iki P(Mk-i ~ )Eqs. ( i.7) and (4l.11) in combination wit,

Note that Eq. (4.3) represents a- Gaussian mixture are the ke reutstat m ibl

under the typical Gaussian assumptions on the noise 5. are the key results that make possible

terms in Eqs. (2.1) and (2.2). This mixture is then the state estimation for a system with sojourn-time-
approximated by a single moment-matched Gaussian.' dependent model transitions.

Therefore it follows that the- input to the filter Finally, for output only, the latest state
matched to model j, -I.r, is obtained from an estimate and covarlance are obtained according to
interaction-of these r filters. This interaction Eqs. (4.1) and (1.3) as
consists of the mixing of the estimates (klk] X _ (klk} pi(k) (4.12)

'(k-Ilk-i) according to the weightings i:1

(probabilities) VII(k-l k-l]. The P(klk) - i(k)(PI(klk)

evaluation of the probabilities (4.4) and (4.S) in 1 i

the STOM situation, are the key results needed ( [(RIklk) - (klkl( j(klk) - R(klk)' (4.13)
to obtain a recursive state- estimation algorithm for S. Simulation Results
this type of model switching. These probabilities are
shown below to follow from the results in Section 3. The algorithm developed in Sec. 4 using the

Fig. -4.1 describes the resulting Interacting sojourn time pmf obtained In Sec. 3 Is used to

Multiple Model (14) algorithm, which consists of r estimate the state of the system. In the first

interacting filters operating in parallel, The example the results of this STO-based IMM estimation
scheme are compared with results obtained from an IMM

mixing Is done at the input of the filters with the algorithm based upon a Markov model transition
probabilities, detailed later in (4.7), conditioned assumption. In the second example the STOM-based IMM
o n Z. estimation scheme Is compared to the

One cycle of the algorithm consists of the detection-estimation algorithm of [91. It is
following: assumed that an STOM process described in Sec. 2

Starting with the model-conditioned estimate governs the switching between models. In the
following T is the sampling period and k Is an

i (k-Ilk-i), with associated covariance integer representing the number of sampling periods
P'(k-flk-0), one computes the mixed initial since time zero.
condition for the filter matched to M(k)=j according Example I
to (4.3) as follows The estimation of a controlled double integrator

0i, system with process and measurement noises is
x°(k-Ilk-i) x(k-IlJkI) i(k-Ilk-il (4.6) considered with a gain failure. The two possible

From (4.51- models are given by the following system equation
1U (k -Ij k - I) - -P(M(k)=JlM(k-i)-l'Zt'l}P(M(k-ll}"ilZ "|) XI~k+l) lk

S(kl k-k- (47) ulk) + vk) 1-1,2 (S.0I

with measurement equation
'This Is the key step of the IMM that yields an z(kl - (] 0O xi(k * w(k) (5.2)
algorithm with fixed (and modest) computational The models differ In the control gain parameter bi.
requirements: using r filters It yields performance The process and measurement noises ire mutually
comparable to the Generalized Pseudo Bayesian uncorrelated with zero 'mean and variances
algorithm with r2 filters IB4I. given by

g(v~k] v(j~J w 4,10 "2 8ki 53



and itere (vtk)) and (w(k)) are mutually independent
E(w(kl w(j)I (5.1 zero-mean Gaussian-white noise, sequences with

The control gain parameters were chosen to be bl2 covariances 0-0.1 and R-1.0, respectively. The

and b2. initial conditions are x(O)'-H(30,400), P(8 0) I)l/3

The transition probabilities pi (Ti and. for i-1,2,3. For the real system x(0)-li in every

pi(T) defined In (3-1l are shown in Fig. simulation. The process M(k) is modeled by a
semi-Markov chain with the Imbedded Markov chain

S-i Note that p.i(1. for ii', are given transitlon probabilities given bypu1 p,.p 3 O, P12"0.7.

y p l(1) * I - p 1=~0 0.3. p G0.B, p -1=04, 1 .O.3, and p, 2-O.7 . The sojourn

Thus we see -that p,(T) is initially .5 and time probability mass functions p,(7) are assumed

rises rapidly to .99 and then decreases towards .1 to be
which is Its steady state value We also see that PI(T) - alexp(-17-311

p22(tl has a value close to 1.0 for this range p2(T) - azexp(-IT-GII
of 7 and thus model state two Is essentially an p3(T) -a 3exp(-lT-811 (S9)
absorbing state.

Figs. 5-2 through 5-1 present the results of for T0 with a, such that

100 -Monte Carlo runs, The true ,yvtem was initially .10) i=1,23. ISIt0
model I for every run and tle model transitions
occurred according to the probabilities of Fig. S-I. The results of 50 Monte Caro runs average are
For simplicity, since we are mainly interested in the shown in Figs. 5-5, 5-6. In Fig. $-S we compare the
estimation of the state, and not in the control rms state errors of the two filter OCA based
strategy, we set utk),3 for all k . semi-Markov estimator of 1M91 with our" two filter GPO

The Markov based IMM- used for comparison utilized based semi-Markov approach, and with the- GPO
the a priori average transition probabilities estimator using 3 filters. Note that the values for
pi IT). obtained by taking the expected the OEA estimator are two-time-step smoothed values
value of the transition probabilities shown in (see -(1191, Fig. 7. Mv2 most likely histories
Fig. S-1. In-other words, the conditional retained) whereas the values for the STDM-IMM
probability 5, from (3.5) is replaced by the a estimator are filtered values. We can see that our
priori lunconditional) 5 given below in f5.71, estimator with two filters-is stable as opposed to
The probability of having a sojourn time T, the unstable two-filter 0EA method.
equal to T is the probability that model i is in -The plot of tEi 3 filter STOM-IMM estimator shown
effect for T-I steps, and then a transition occurs in Fig. S-S is given so that one can compare the
at step t, improvement obtainable by adding an extra filter to

P(T,=T) x [1Pt; W I - pn(Ti (5.61 this approach. We see that the long term trend is
-. for the 3 filter STOM-IMM to give a smaller rms error

Thus we get than the version with 2 filters.

,= p.i(rI) P(T, T) i=I.2 (S.7a1 In Fig. 5-6 we compare the probability of error
obtained using a 4 filter DEA estimator versus the 3

and filter STOM-IIM estimator. Both curves were obtained
5i - Pi, iS.7b) from a filtering operation (see [M91 Fig. 10, N-0).

Figs. 5-2 and 5-3 are plots of the RMS error in We can see that the present estimator gives a much
x1(k) and x 2 (k) respectively. From Fig. S-2 we clearer indication of the correct system structure
can see that the STOM-based IMM estimator improves and hence Is preferable for failure detection,
the RMS -error in xik) by as much as 20 percent. 6. Conclusion
From Fig. 5-3 we see that the RMS error In x2(kl
of the STO-based IMM estimator is as low as one We have applied the recursive state estimation
third the error of the Markov-based IMM scheme. Thus algorithm for dynamic systems, whose state model
the mean-square error Improved by an order of experiences lumps according to a sojourn-time-
magnitude. dependent Markov, STOM, chain, to the problem of

Fig. S-4 is a plot of the average model failure detection- The algorithm, which -is- of the IM.
probability error. This is the error in the filter's type, uses noisy state observations and the
determination of the correct system model. calculations are done In the following order:

Typical running times for the STOM-based IMM vs. 1. Probability .f each -model -being the current
the Markov-based IMM are In the ratio of 3:1. The
length of the time-span over which the sojourn time model
pmf is computed can be truncated - It becomes 2. Sojourn time-pmf In the current model
negligible after IS steps. This keeps within 3. Model-conditioned state vector estimates and
reasonable limits the additional calculations of the covarlances
STOM-based filter and prevents any growth of the 1. Overail state vector estimate -and -Its-
computational or memory requirements. covarlance.
Example 2 The first exanple simulated indicates that the

In this example we make a comparison between the use of -the STOfl-based 1MM-estimator can give a
detectIon-estimation algorithm, (DEA), based substantl Improvement In state es lmalonover
semi-Markov estimator of (M91 with the STOM-based IMM su baI i o e nate eis onter a
estimator of this paper. For this purpose the system Mqrkov-based IMM. The latter relies -on the-a priori
and the semi-Markov model switching process average-transition probabilities -while the Former
attributes are as in I9) example 3, and are repeated uses conditional transition probablities obtalned
here for ease of referance. from the conditional sojourn- time distribution. This

The- model process (k) is taken as a semi-Narkov example shows that ther StON-based "schem is
chain. The scalar system Is described by I1 substantially -better than the -Markov;basadA cheme In

x(k.l) 1.04 x(kJ + v(k) determining the true system model, which i -

zk) x(kJ * (Mfk))w(kJ, K=O..2.... (S.8 beneficial for failure detection schemes.
The second-example slniul.ted shows, that, -rori the

where r - 3 models, OfJI00, O(2)10, and 01311. particular system under consideration the STOM.bared
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Distributed Adaptive Estimation with
Probabilistic Data Association*

K. C. CHANGt and Y. BAR-SHALOM0§

A fusion algorithm for target state estimation under cluttered environment
with uncertain measurement origins and uncertain system models in a
distributed manner can be applied for tracking a maneuvering target in a

cluttered and low detection environment

Key Words-Distributed estimation; multiple model; target tracking; probabilistic da'a association;
Bayesian methods; distributed sensor networks.

Abstrac-The probabilistic data association filter (PDAF) Several approaches have been proposed to
estimates the state of a target in a cluttered environment, perform the state estimation of a system together
This suboptimal Bayesian approach assumes that the exact
target and measurement models are known. However, in with identification of each model (out of a finite
most practical applications, there are difficulties in obtaining set) in- a centralized framework. One of the
an exact mathematical model of the physical process. In this significant schemes is the so-called- generalized
paper, the problem of estimating target states with uncertain pseudo Bayes (GPB) method (Tugnait, 1982;
measurement origins and- uncertain system models in a
distributed manner is considered. First, a scheme is described Chang and Athans, 1978) and the other is the
for local processing, then the fusion algorithm which interacting multiple model (IMM) algorithm
combines the local processed results into a global one is (Blom, 1984; Blom and Bar-Shalom, 1988). The
derived. The algorithm can be applied for tracking a
maneuvering target in a cluttered and low detection general structure of these algorithms consists of
environment with a distributed sensor network, a bank of filters for the state cooperating with a

filter for the parameters. A GPB algorithm of
i. INTRODUCTION order n (GPBn) needs N" filters in its bank

THE MAJOR difficulty in tracking a target with (Tugnait, 1982). The IMM algorithm performs
switching models/parameters in a cluttered nearly as well as the GPB2 method with notably
environment is due to-the fundamental conflict less computation, namely, at the cost of GPB1
between the operations of model/parameter (Blom and Bar-Shalom, 1988). A distributed
identification and data association, since the estimation scheme with uncertain models has
measurements with large innovations are con- also been derived (Chang and Bar-Shalom,
sidered as unlikely to have-originated from the 1987). However, in all the above approaches, a
target of interest. In this paper, a multiple model perfect data association was assumed, i.e. there
approach in conjunction with the probabilistic is no uncertainty in measurement origins.
data association (PDA) filter (Bar-Shalom and To -take into account the data association
Tse, 1975; Bar-Shalom, 1978) to track a target problem, an adaptive PDA algorithm was
with switching models using -distributed'sensors, presented in Gauvrit (1984) for tracking in a
is presented. cluttered environment with unknown noise

statistics. This algorithm identifies on line the
Received 23 February 1988; revised 18 August 1988; unknown variances of the process and measure-received in final form 17 September 1988. The original

version of this paper was presented at the 10th IFAC World ment noises but uses an earlier (static) multiple
Congress which-was held in Munich, F.R.G., during July model approach (Bar-Shalom, 1988). In this
1987. The Published -Proceedings of this IFAC meeting may paper, a distributed estimation problem which
be ordered from: Pergamon Press plc, Headington Hill Hall, t
Oxford OX30BW, U.K. This paper was recommended for akes into account both model and measurement
publication in revised form by Associate Editor P. M. 0. origin uncertainties will be derived. To handle
Ferreira Guimaraes under the direction of Editor H. the model uncertainty, a more general formu-
Kwakemaak.

t Advanced Decision Systems, 1500 Plymouth Street, iation With dynamic multiple models described by
Mountain View, CA 94043-1230, U.S.A. All correspondence Markovian parameters will be adopted. These
to this address. parameter may switch within a finite set of

f U-157, ESE Department, University of Connecticut, valaes c set difrn syste models
Storrs, Cr 06268, U.S.A. values-which represent different system models,

i Supported by AFOSR Grant 84-0112. To take care of the missing and false
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measurements, the PDA scheme will be As in the PDA filter, it is assumed that a rule
employed. The probabilities of associating of validation of the candidate measurements* is
measurements to a target given different system available such that it guarantees that the current
models will be computed and used to weight the return will be retained with a given probability.
combination of state estimates. For each sensor, denote the validated measure-

The problem is formulated in Section 2. A ments at time k as
centralized algorithm which combines the IMM Zl(k) = i (4)
algorithm and the PDA filter, resulting in the
MMPDA (multiple model PDA) filter, for local where mkl is the number of validated measure-
processing will be described in Section 3.* Then ments of sensor i at time k, and
the fusion algorithm which combines the local Zik A {Zi(/)}k (5)
processed results from multiple sensors into a =

global one will be presented in Section 4. The local model-conditioned state pdfs at
The algorithm can be applied for tracking a sensor i-are

maneuvering target in a cluttered and low p(x(k)IM(k), Z i' , yik),
detection environment with a distributed sensor
network (DSN). i=1,2; j=1,... ,r (6)

with the corresponding model probabilities
2. PROBLEM FORMULATION

Let us consider the two-node scenario similar p(M,(k) IZ"., yi.k}
to that given in Chang-et-al. (1986), where each i = 1, 2; j = 1,... ,r (7)
node processes the local measurements from its where
own sensor and sends the local estimates to the yik {yi(1) . , Y'(k)} (8)
fusion processor periodically. The fusion pro- anid- Y'(k) denotes the information received by
cessor then sends back the processed results node i during the sampling period ending at time
after each communication time. k, which is defined as the fusion result (namely,

The dynamics of the target in track are global conditional pdf) up to time k - 1.
modeled as Assuming lossless communication and that the

x(k) =f[x(k - 1), M(k), v[M(k), k - 1I] (1) information communicated is the sufficient
statistics, i.e. the information contained in yl.k is

where x(k) is the state vector, v[M(k), k - 1] equivalent to the information in Z7,k- , then we
the process noise vector and M(k) the system have the following equality:
model from time k - I to k. Assume the random zhk-t, y,=.k) Zik-, zk-1)
model process M(k) is Markov and it can only p(x(k) y p(x(k) -)
take values from a finite set M, which contains-r =p(x(k) Zk-) (9)
distinct models~t i.e. where i represents all sensors other than sensor i

M ={(M,).. (2) and Zk={z(1))k., where Z(l) represents

The measurement system, is modeled as follows, measurements from all sensors at time 1.
Ifthe-measurement origis from the target in Given the above models, the question now isIf the measurement originates how the global conditional pdf can be con-

structed by fusing together the local ones.
Z(k)= h'[x(k), M(k)] + w[M(k), k] (3) Specifically, we shall investigate what is the

wh ?(k) is the measurement vector from necessary and sufficient information that has to
where znWk) is the corrom be transmitted between nodes. The derivations
sensor i and w[M(k), k] is the corresponding will'be carried out for arbitrary pdfs; however,
measurement noise vector. The two noise the simulations assume linear -models with
sequences are mutually independent and inde- Gaussian random variables, in which case the
pendent of the initial state. state's model-conditioned pdf (6) is Gaussian

and the overall conditional pdf of the state is a
*The MMPDA algorithm has been implemented in the Gaussian mixture (Bar-Shalom,'1988).

interactive software MULTIDAT (Bar-Shalom, 1987. 1988).
f The models can have states of different dimension. In

this case, the lower dimension state vectors are augmented 3. CENTRALIZED ALGORITHM FOR LOCAL
with suitable components that are zero w.p.1,-to make them PROCESSING
compatible. This is elaborated on in Section 5. For each local node, the centralized algor-

tSuch a rule, also called "gating", considers only the ithm where all measurements are sent to and
measurements within some distance from the predicted
measurements (for details, see, e.g. Bar-Shalom and processed with one processor is described below.
Fortmann (1988)). The goal is to compute the conditional state
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distribution given the local accumulated measure- where
ments. With only model uncertainty, the local
conditional pdf at sensor i can be obtained as C,[MI(k)] = , cf[M(k), 0 ]

p(x(k) I Z", Y"1,k)  yo .,
X ppof, I (k), Z"'- ,  '}

= p(x(k) I M,(k), ZI.k, yk) =p(Z'(k) Mj(k), ZIAk.I, y.k). (15)
i-I

x P{Mi(k) I Zi'k, yi.k). (10) In equation (13), the joint measurement density
is (see, e.g. Bar-Shalom (1988))

When the additional measurement origin uncer-
tainties are present, the above equation becomes p(Z'(k)i M(k), o , Zi'k-1, yi.k)

p(x(k) I ",, yik) ,,
Hp(zfl(k) I M(k), Oi4, Zi.k-1, yi1k)

=)Ix(k) I MP(k), Of," Zikk, yt"k) y
i _ f V;"'  if 1=0 (16)

x P(O I M (k), Zi.k, yik}- I. V-MJ+p[z (k) I M(k)l otherwiseP (I I k I,)

x P{M(k) I Z yi.k} (11) where Vk is the volume of the validation region,

where 01, is the event that zl,(k) is the correct because our assumption on the incorrect
measurement and h denotes no correct measurements being uniformly distributed,*
measurement. independent from each other and from the

The first term on the right-hand side of correct measurement, and
equation (11) is the standard PDA -filter based
on model MU, where for each O/  pzl(k) I Mj(k)_(k); -01,(k" (17)k)

p(x(k) [) = pGp(z,(k) I M,(k), 0,, Zik -l, ri'k) (17)

1-
ci[Mj(k), 0 1p(Z(k) x(k), is the truncated density which is zero outside the

Mj(k), 01, Zik-1, ys.k) validation region where PG is the probability that
the correct return will lie in the validation

xp(x(k)I MI(k), Z''k - , y'.k) (12) region.

where 0', has been omitted in the last term above In equation (14), P{01,I M,(k), Z.k-, yi.k) is
(since it is irrelevant) and the prior probability of the event 01, based on

model Mi to be correct at time k. By choosing a
c f[Mj(k), 0O,] large enough validation threshold, this prob-

---fp(Z'() I x(k), M(k), , Zi Jk - I, yi) ability becomes independent of M(k) and is
assumed to be the same for all 01, unless target

xp(x(k)j Mj(k); Zi~k- , y~k) dx(k) signature information can be used. If no such

=-p(Z'(k)J M(k), 01,, ZkI, yi.k). (13) information is available, then

Using- Bayes' rule, the second term on the P(OI M,(k), Zk-l, yi.k}

right-hand side ofequaion-(H) is I1-PGPD if i = 0

P itJ (c), Z 'kI. .y) =1 Pthri (18)
p('l J(k ), O1,, Z1,k-1,y, k')p(O I M(k ), Mk

7l;k-l- yik; p(Mi(k )' Z,,.k-1, yl,k:)- - - where PD is the probability that the correct

p(Z'(k) f M(k), Z1.k- 1 YS ) -Y return will bedetected.
X p(M(k), Z.k - , yi.k) For each model M)(k) and event 0s,, equation

1- (12) is the standard filtering equation. In that
c ~p(Z(k). M,(k),p O1_Z, ,Z-t, yik) equation, by using the -IMM approach (Blom

2lJ [Mj lMand Bar-Shalom, 1988), the extrapolated pdf is

4 PO J,(k), _Z' - 1 , y,.k) obtained by combining the extrapolations of the

S,(

x P(O ,I M1(k), ZI 'k1, YIJk} (14) °For more elaborate models sec Bar-Shalom (1988).
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prior pdfs (independent of the event 011) where

p(x(k) I MI(k), ZIkY~ C4 = c2'[M 1(k)]c'[M1(k)]

Xp(x(k) I M,(k), M,(k - 1), Z1,k-1 yI~k)= -p(Z'(k) I Zik1 yik) (22)
x )?M,( - )1 j Zk, iki1, yi~k) and c'[M,(k)] and c'[Mj(k)] have been obtained

r in equations (1) and (20), respectively.
Sp~x(k) I M,(k), M,(k - 1), ZI.k-1, y ik) Equations (12)-(21) complete a recursive cycle

i-i of the local processing. A flow diagram of the
x P{M,(k), M1(k - 1) 1 Zi.k-1, yi~k} local MMPDA algorithm is given in Fig. 1. The

P{Mj(k) I Zik1 ya.k} flow of data is represented by the model-
r ~~~~conditioned means 1/andth moeprb

rI j~) abilities thPodlprb
i~M(k)] [ptx(k)

MI(k - 1), ZIAk1, yi.k) 4. FUSION ALGORI"M
< P{M,(k) I M,(k - 1)) With the local conditional pdfs obtained in
x P(M,(k - 1) 1ZIA-i, yi~kfl (19) Section 3, we can now derive the fusion

1. algorithm to obtain global pdf. Similar to
where p(x(k) I M1(k), M1(k - 1), Zi.k-1, yi~k) is equations (10) and (11), the global conditional
the extrapolation of the conditional state pdf pdf can be obtained as
given Zl.k 1 and- yi~k from model M,(k -1) to p(x(k) I Zk)
model Mj,(k) and

c3'[M,(k)] P(Mi(k) I Zi-1 y:.k} = , p(.x(k) IM,(k), Zk)p{(Mj(k) I Zk}

- P{Mj(k) I M1(k - 1)) = p(x(k) IM,(k), 01, 0, Zk)
xPM ik-1)j 1ZIA- 1 , yik). (20) -1 oiIf

The last term of equation (11) is the a /1 1{2~ 1~ j(k), Z}P{M,(k) IZ}
posteriori model probability, which is obtained
as (23)

1 ik1,yk Assuming measurements from different sensors
Tip(Z'(k) IM,(k), Z"-,yk are independent given the target state, then the

x M~)Zi.k-1, yi.k} first term on the right-hand side of equation (23)
xP{M1 k) Ican be obtained as

-ic[Mj(k)1c'[M,(k)1 (21) p01)I ,k , 2, Zk)
41 C23p',) j~ 1 1 2

x H p(Z'(k) x(k), (k), Oil) 1, Z- 1)I
xp(x(k) I Mj(k), 0Zk0l) -1

11 1

cI[p((k) ~ , M0 k)2] ~ Z

FILTER FIL x p(k)Ix(k) I Mj(k), zk li

Fin. ~ ~ OEL101AR 13. xtnrlzd PAaloih ihr2a p (x (k) I I,(k), Zk)
UPDATE.(24
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where Assuming 011, and 011 are independent given
th~e target state, then similarly to Chang et al.

c[M,(k), 011p e121 (1986), the second term of equation (23) can be
02, k-1)obtained as

fJp(Z(k) IJx(k), M,(k), 0b 1?, 12 p(Ol02 eZMk)
p(x(k)] M1(k), 1~ f?~ Z )dxk1 fp(Oj., 02, Z(k) Ix(k), Mj,(k),

Zk- )p(x(k) I MI(k), Zk- 1) dx (k)
is the normalization constant.I

Since from equations (12) and (9) CI[Mk(k)]

c~~k[IM(k), 0IJ pZx~k) IM,(k)2 Zk dx1)

p(Z(k) I x (k), M,(k), 0',, V-1) 1 2 { 11M() Zk -1}

x p(x (k) IM;(k), Zk- 1). (26) C2fM,(k)] j. I

Equation (24) can be rewritten as rlp(x(k) I Mj(k), O'd Z'(k),ZkZ&1)
px~k f. M((k, I~ M ~ Zk) xfpk'x~~xkk MIk) 0M),0, (k), ZkI- ) dx)

1 (30)
c[M.(k), 0', 021her

i.c[A1 k) 4 cj[M(k)J =p(Z(k) I Mj(k), Zk-I) (31)

x x p(x(k) I M,(k), 011, Z 4k, yi.k)i andp(x(k)-1 M,(k), Zk-1)

02 C2[M,(k)] = -2 Cj1MAk
2oM~) H1,12r p(Z'(k) I A'4(k), Zk-1)2 ~~)IM() 01, ZLik, yik) .

x lIp(x(k) Mj(k), IZk- 1) (27) = ct[M 1(k) (32)

where the denominator can be derived-as flIc[Mk)

p(x(k) I M,(k), Zk-I) - px(k), M,(k) I zk-1i are normalization constants, where c'(Mj(k)]
p(M,(k) J Zk-) was given in equation (15).2

Since the information contained in Zlis the
FIp(x(k) IM,(k), M1(k - 1), ZV- 1) same as that in {Zik1, yi~k} (see equation (9)

x P{M,(k) JM,(k - 1))P(M,(k - 1)1 Zk-1} for details), equation (30) can be written as

SP{Mj(k) I (k - 1)}P(M,(k - 1)1 Zk-1} P( 1,2 1 M,(k), }
1-1 2

and (28) 1, P{ lfM(k), Zik, ylk}
1-1

c M (k,01, 021 CfM,(k), 01,, 0t2, c2[jM(k)]

rI c'I[A1(k), Olj fH p~x(k) I M,(k), oZ~ uk

2 J p(x(k) I Mj(k), Zk-1) dx(k)
[I p(x(k) j (k), 0i, ZIA, y,,k) ______2

f p(x(k) I Ml(k),_ Zk-1) dx(k) C2[Mj(k)]I.,P(~ I M() Ik ik

(29 11

is the new normalization constant. From equations (27) and (33), equation (23) can
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be written as- and e' are

p~~k [Z) te =p(Z(k) lZ - )  (36)
- cA[M(k)) and

CAA' e = C_ = a . (37)p [)~ x(k) I Mj(k), O,, Z'k, y".k1 rp Z) (37)

fT p(x r (~k) ',- i .

×Xx P(O, I M,(k), z1 *, yIkl]I " p(x(k) I M,(k), ZkI) 4.1. Overview of the fusion algorithm-
× p(Mi(k)IZk}. (34) From the above, it follows that the global- a-

pcsteriori pdf and model- probabilities- are
The last term of equation (34) is the global a obtaincd by-combining (multiplying) the local-a

posteriori model probabilities. With eq.uations posariori pdfs and model probabilities and
(31) and (32) we have rermoving (dividing)-the common a priori pdfand

P(Mj(k) IlZkX model piobabilities. From equation (34), we-can
PM I st. that for each model, -the conditional global

-p(Z(k) M(k), Zk-")P{Aj(k) pdf given that this model is-correct- is obtained
C by the sum of global- fused pdfs given all possible
I [Z()M k -1) global event pairs 0,, 022. The overall global a
=-.cj[M(k)]P(Mj(k) - posteriori pdf is then obtained by the sum of
C global pdfs of each model weighted by the global

[ 1M,(k) a posteriori model probabilities. Equations (34)
cP{M,(k) 2,Zk-} and (35) represent the complete cycle of fusion

processing. From them it follows that the
= c2[M,(k)] information needed to be communicated from

Clocal nodes to the fusion node consists of:
2

1- [c2[M(k)IP{M,(k)Iz'}1 (a) the model probabilities;
X P(M(k) Z -)} (b) the association event probabilities; and

(c) the-corresponding pdfs (mean and covari-
_c2[M,(k)] ance for Gaussian case).

2 A summary flow diagram of the fusion
1 [p(Zi(k)l Mi(k), Zi 'k - i, y".) algorithm with two models is given in Fig. 2. For

i,,I ~ ~~x P (MW(k) lZk-1} :,.,,.,,. , ., ,'.,,,

x
C2[M11k)] 

[p(Mt(k) I Z" ,

[P(M,(k) I Z'(k), ZIO} (MIxXINlG) __

x p( Z(k) l ZIN)G (DAM )

P{" 1(k IZ'11 PA} . 1_1 P -

=c2[M1(k)] o, 1 ' mr  ,

P{Mi(k) 
Z k- }

Tc

2 [M(k)] ' P(Mj(k) NZ"' YI-k)

P(M(k) I Z_} (35)(1

where the denominator is the same as that of
equation (28) and the normalization constants ( . 2. Distributed IMPDA algorithm with r = 2.
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simplicity, only the mean of each pdf is shown in where the process noise v(k) representing here
the figure. References to the corresponding the acceleration increment over one period is a
equations are also given in the figure. zero mean Gaussian white noise vector with

covariance
5. SIMULATION RESULTS [q2  01

A !wo-dimensional single target tracking 1 0 q2.y]
problehn will be considered. Two target dynamic An.t
models will be assumed, one with (nearly) Assuming only position measurements to be
constant velocity and the other with (nearly) available, then, for node
constant acceleration. The Markov transition zl(k) = Hx(k) + wj(k) (45)
matrix of the models is known and given. The where
initial target state estimate is given and the inirial 1 0 0 0 0 01
probabilities of the two target models are 0 0 0 1 00 (46)
assumed equal.

The-target dynamic models with discretization and wt(k) is a zero mean Gaussian white noise
over time intervals of length T are

x(k) = F[M(k)] x(k - 1) 0

+ G[M(k)lu(k - 1) (38) y
where for model 1, the nearly constant velocity To overcome the fact that one has different
model, the state is state dimensions the lower dimension vector was

x [x y 9]' (39) augmented with suitable zero components
and (which then have mean and variance zero) to

I T 0 0- make it compatible with the higher dimension
0 1 0 0state.

F 0 1 0 (40) With sampling interval T = I s, the true target
0 1 is simulated with constant velocity for the first

_.0 0 0 1seven scans, then switches to constant acceler-
T2/2 01 ation for the next seven scans, and finally returns
T 0 to constant velocity for another seven scans. The

G 0 T2/2[ (41) initial target state is assumed to be [100 m,
30ms',0, loom, 15ms ',0] and the acceler-
ation is assumed to be 5 and -5 m s-2 for the x

The process noise v(k) = [v,, vyJ' representing and y coordinates, respectively.
the acceleration during one period is a zero The variances of the process noise are taken as
mean Gaussian white noise vector with q ,y = 0.1 (m s-)' for model 1, the nearlycovarianc constant velocity model, and q.x = q2,y =

q 1.. 0 1.0 (ms-2)2 for model 2, the nearly constant10 qij- acceleration model. The detection probabilities

For mocels 2 (with acceleration), the state is for both-sensors are equal to 0.67 and the false
x =[x .k X y 9 9]' (42) alarm rates are 0.0001 m -2. The standardand deviations of the measurement errors are

1 T T2/2 0 0 0 assumed to be /(10) m for both x and y
coordinates of the two sensors. The Markov

0 1 T 0 0 0 transition matrix for the model parameters is

F 0 0 1 0 0 0 (43) assumed to be
0 0 0 1 T T2/2 [0.9 0.11
0 0 0 0 1 T [0.1 0.9]
0 0 0 0 0 1 J The initial state estimate is generated randomly

T2/2 0 with mean the same as the true target state
and covariance matrix equal-toT 0

S 1 0 (diag [100, 1, 0.1,100, 1,0.11.
G 0 T2/2 Three -different configurations will -be tested.

First, each sensor will be simulated indepen-
0 T dently using the MMPDA algorithm described in

L 0 1 Section 3. Second, a centralized processing with

AUT 25:3-C
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Fia. 3. Tracking results with sensor I only (one sample run).

measurements from both sensors will be both single sensor cases the algorithm fails to
simulated using the same MMPDA algorithm, detect clearly the switches of the target between
Finally, the distributed case will be simulated. In two models. The distributed algorithm not only
this case, the two nodes will communicate every responds faster in detecting the first jump of the
scan.* At each scan, each node will process its target from the constant velocity mode to the
own sensor measurements first, then send the constant acceleration mode, but also successfully

l9cal processed results to the fusion node. After detects the end of the acceleration. The
receiving the information from both local nodes, centralized algorithm, which is not shown in the
the fusion node will use the fusion algorithm figures, performs exactly the same as the
derived in the previous section to construct the distributed one.
global estimates and send the results back to The average performances for the three
each-local node. configurations for 50 runs are given in Table 1.

Simulations were carried out with 50 Monte The centralized and distributed algorithms
Carlo runs. The results of one sample run are successfully track the target in 43 out of 50 runs
shown in Figs 3-5. Figures 3 and 4 show the ("successful tracking" is defined when the
estimated and true trajectories of the target with estimated target position is within 30 m of the
sensors I and 2, respectively. Figure5 shows the true target position for the last three scans).
results for the distributed case where the two However, out of 50 runs, sensor 1 alone and
sensors interchanged their processed -results. As sensor-2 alone only track the target successfully
one can see,- the single sensor processed results in 27 and 30 runs, respectively. The r.m.s.
have poor performance, and the target is lost in position errors for those successful runs are also
both cases. Figure .6 shows the probability calculated. Similarly, the centralized and distrib-
trajectories of model ' for the three cases as uted algorithms perform better than the single
calculated by the corresponding state/model sensor configurations. Note that the quality of
estimators. As can -be seen from the figures, in the estimation using two sensors in terms of

mean square error is significantly better than
This ix.tolally equivalent to the centralized configuration using a single sensor.

but ha;3 tle advantages of redundancy and reliability for a
DSN 'systei. This configuration- can also be used with a The centralized case yields the upper bound of
lower-communication rate (Chaniget aL., 1986). the performance for the distributed configur-

J--
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FIG. 6. Model 2 probability trajectories.

ation when the nodes communicate every scan. ance of the algorithm. With full communication
The simulation shows that the results of rate, the distributed case performs exactly the
the distributed algorithm are the same as in the same as the centralized case, which confirms the
centralized algorithm, which confirms the theor- theoretical equivalence, but has the advantages.
etical equivalence, of increased reliability.
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Substituting these into (310), and using (E-2), we obtain 15] G. C. Goodwin and K. Sin, Adaptive Filtering Prediction and Control.
Englewood Cliffs, NJ: Prentice-Hail, 1984.

lir el (t) = 0. (3.13) [6] C. A. Desoer, "Slowly varying discret system, x, r Aix," Electron. Left.,
vol. 6, pp. 339-340, May 1970.

[71 C. A. Desocr and M. Vldyasagar, Feedback Systems: Input-Output. Proper-
The estimation property (E-3), the uniform boundedness ofy(t) and u(t), ties. New York: Academic, 1975.

(8d G. C. Goodwin, R. L. Leal, D: Q. Mayne, and R. H. Middleton, "Rapproche-and (2.5) the definition of 7*, imply that iment between- continuous and discrete model reference adaptive control,"

lir e(t) O. Automatica, vol. 22, pp. 1991207, 1986.

I..

Substituting this into (3. 11) and, again, using (E-2) we obtain

lir el(t)=0. (3.14)1- An Adaptive Dual Controller for a MIMO-ARMA
Since E(z - 1) is a stable polynomial, we can establish ii) by substituting System
(3.13) and (3.14) into (3.12). V1V7 V

Remark 3.1: The multirate sampling estimation algorithm in general P. MOOKERIEE AND Y. BAR-SHALOM
does not have the property that e(1)/l + 1(0(1 - 1)[12 1/-E 4, which is
required in the stability proof of conventional adaptive control algorithms. Abstract-An adaptive dual controller Is presented here for a multin-
However, we still prove the stability using property (E-3) and the relation putract--An ARMA system. The plant has constant but unknown[e~tJ') I > it~t)[ for tj~t t < tj.put multloutputARAste.Tepnth osttbuunow
Ie(t7-)I Ie(t)I for ~I- t < 1j. parameters. The cautious controller with a one.step horizon and a new

dual controller with a two-step horizon are examined. In many Instances,
IV. CONCLUSIONS the myopic cautious controller Is seen to turn'off and converges very

In this note, we have developed a multirate sampling adaptive control slowly. The dual controller modifies the cautious control design by
algorithm which allows a fast sampling rate offebakcontrolto beused numerator and denominator correction terms which depend upon theaven if the computation of parameter estimate and controller coefficient sensitivity functions of the expected future cost and avoids the turn.off
may take a relatively long period of time. and slow convergence. Monte-Carlo comparisons based on parametric

The key idea to achieve this is to record the plant input and output prior and nonparmer c satsical analysis Indicate the superiority of he dual

to the currently obtained estimate and use them to compute the coming controller over the cautious controller.

estimate and controller coefficients. Thus, the computation is not 1. INTRODUCTION
dependent upon the inputs and outputs'appearing during-the updating
process. The closed-loop system is shown to be stable. Multiinput multioutput systems with unknown parameters are encoun-

Remark 4.1: tered in many practical situations, and their control poses a great
i) One may further extend the algorithm to consider 1 - ti- I > n + m challenge to the stochastic control theory. It is not possible to obtain an

+ d il. In this case, a relation optimal solution for such systems because of the dimensionality involved
in the stochastic dynamic programming [6]. In such situations, emphasis

1'e(t I +d+ k) 1:Ct ax [e(t)l+ C2 is on obtaining a suboptimal solution that incorporates the intrinsicIt_+ <x + properties of the optimal solution. For stochastic systems, the control has
), c u a ein general a dual effect [2], [11]: it affects the system's state as well as the

(k < cc, C1 < co, C2 < cc), can be used, and the algorithm orly needs to future state and/or parameter uncertainty. Thus, the dual controller offers
compute e(t) for lj. 1 t < j- I + fi but not for every tin tj. < t < t i. significant improvement potential for the control of uncertatin linear

ii) Instead of the ARMA model, one can use 6-model [8] in the plants. In multistage problems it "probes" the system to enhance real-
algorithm, which retainz the key features 6f the continuous-time model time identification of the system's parameters in order to increase the
* and allows a wide bandwidth MRAC system to be achieved, accuracy of the subsequent control decisions and regulates the system at

iii) The multirate sampling adaptivi control is presented for an indirect the same time (4], (9].
MRAC system. However,-the method covers a wide class of direct and Two classes of dual controllers exist presently (14]. In the first class
indirect adaptive control algorithms of certainty equivalence type such as [101, [12], (181, the control minimizes a one-step ahead criterion
pole-assignment, LQ-optimai, etc. augmented by a second term which penalizes for poor identification. This

iv) Various methods developed for improving adaptive control system approach is simple but often requires tuning of some parameters. The
performance are applicable to the presented multirate sampling adaptive second class (developed for SISO systems in (3], (16], (17]) used the
algorithm. These methods include: a) various modifications of parameter stochastic dynamic programming equation and expands the future cost
estimator for improving convergence rate; b) noise and-disturbance about a nominal trajectory. Using first- and second-order Taylor series
filtering techniques; c) robustness techniques with respect to disturbances expansions of the expected future cost about a nominal, trajectory, dual
and unmodeled dynamics, such as deadzone, normalization, etc.; d) controllers for- MIMO static systems are developed in [5] and (14]. A
internal model principle for deterministic disturbance rejection, etc. second-order Taylor series expansion of the future expected cost is

performed about a nominal trajectory and a dual controller based on a
REFERENCES two-step horizon is developed in this note for a MIMO dynamic (ARMA)
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controller provent 's -the turn-off phenomenbil and -slow covergence cost to go from k to A; and Pk is the cumulated information at time k when
prcualenitiftl a-ca'utio-us solution. the control ii(k) is to be applied. The information lk is the Set Of all Past

Section-11 gives-thd problem formnuiaion. The approximate dual- controls until time k- I and outputs until time k.
conitroler witN * tWO-3tip horiz~hfor-the MlM10systemn is derived in Thus, for a two-step horizon-we have-
,*dton 117. The control solutiouiis o&W~ned by ipprokimatingthe solution
of the stochastic. dynamic programaung-equaiion. A secoid-order Tsylor jkk 2 =inECk
enes e.xpansion of~ the ekxte fturie ibsi is one abouta minal 1 klk2I'

trniectory and-this leads toiAduaI-cotioliolution- in & clod florin.Ik
Following the derivatio .ns of the dphttolter, a suzi~mary of the algorithn, is min E((y(k + 1) -y,) 'Q(k){y(k + 1) -y,) + J; 1.k+ 2k
given. Section LV describes the sinnii doon of theplint andcompres the-
performnances-of the cautious and the d ual-solution's. SectionY',Vconcludes(2
the note.

where JkZ+ I k+, is the optimal expected cost at the last step with one-step
IT.-R~iLM FOMULAION horizon and is obtained by minimization oflk+i.k+2, and Jk+i.k.2 is the
II. ROBLM FOMULAIONcost to go from k + I to k + 2.

The MIMO system-to be controlled is described by -The cautious control-at k + I with one-step horizon is given by

-E(D'Q(k+Il){Ay(k+Il)+y,)Ilk*1]. (3)
where

E(e(k) = 0; E[e(k) -e'(j= Wb5k).. (2) The cost from-step k + I to k + 2 is

Here y(k) is the output of the plant, u(k) is the inputto the plant, and Jk+ ,k + 2 =tr Q(k+l1) W
e(k) is the measurement noise.+ [A k+1)y, Q +)(yk+1)y)

-The parameter matrices A and B are unknown. This model describes+E{ykl) ,)Q +l(A k+Iy)
some industrial processes lie an ore crushing plant, or a heat exchanger + u'(k + I)B'Q(k + 1) Bu(k + 1)-2(Ay(k + 1)+y,)'
(1]. The unknown elements of A and B comprise the parameter vector -Q(k+ l)Bu(k+ 1)11"+'] (4)
0(k) whose estimate at time k is D(k) with covariance miatrix I,.k). The
parameter vector is designated as and inserting (3)_ into (4) the optimal cost at the last step is

where n is the dimension of the output vector y(k) and a; , b; are the ith +E((Ay(k+ 1) +y,) 'Q(k+ I){Ay(k+ I) +y,) jik+ I]

row of the matrices A and B, respectively. Assuming the parameters are
time-invariant, we have -Er({Ay(k+ l)+y,) 'Q(k+ I)BIlk41]

0(k+ l)=O(k). (4) [ E(B'Q(k+ l)BIlk+1u}]1

E(B'Q(k+ l)(Ay(ki 1)+y, 1 1 k+I](5
A measurement matrix H(k) is defined as

H(k) A diag ( -y'(k)l u'(k), -.y'(k)IuW(k), *.~(5) where E{1Jlk+l) is the conditional expectation given the available
information I k 1.

where H(k) has n rows, and-y'(k), u'(k) are the measurement and The unknown parameters will be chosen from the Gaussian family and
control vectors transposed. thus their estimate 0(k + 1) and associated error covariance P(k + 1) are

With these definitions, the measurement model is the sufficient statistic. The parameter vector estimate D(k + 1) and the
associated covariance matrix P(k + 1) are obtained from a Kalman filter

y(k) =H(k-. 1)0(k- 1) +e(k). (6) according to

The performance criterion to be minimized is J(O), i.e., the conditional K(k+ 1) = P(k)H'(k)[H(k) P(k)H' (k) + W1 -' (6)
expected value of the cost C(O) from step 0 to N, denoted by

JO) =E(C(O)Il1k} a(k+ I) =l(k) +K(k+ l)[y(k+ I)- H(k)a(k)]

FH- 1=D(k)+K(k+ I)v(k+ 1) (7)
'E ( y(k+ 1)-)',)' Q(k)(y(k4-I)-.y,)I (7) P(k+I) =P(k) -P(k)Ji'(k)[If(k)P(k)H'(k) +WP-'H(k)P(k). (8)
Lk-0

where Q(k) is the diagonal weighting matrix, Jk is the cumulated Here Y(k + J) is the innovation of the process.
information at time k, and y, is the desired oupt From (5) it is clear that Jk+ I k+1 is a nonlinear function of the estimated

parameter vector 6(k + 1) anda covariance P(k +- 1). But the estimated
Ml. DuAL-CONTROL WITH A Tw-SE HORZON vector R(k + 1) and the covariance P(k + 1) are not known 'until the

, '* Icontrol u(k) is applied.
First the controller is derived .a fnd ,then a summzry of the algorithm is A control u(k) with a two-step horizon can be obtained from (2) if a

provided, second-order Taylor series expansion Of Jk'+1 k+2 is performed about a
A dual control solution with a two-step horizon is obtained by suitable nominal trajectory. Here the nominal trjectory is defined by

ninimnizing (2.7) with respect to the control u(0) for the multidimensional -I)-a nominal paramter estimate(k 1) =(k)
plant (2.1)-(2.4). This is obtained by solving the general equation of
stochastic dynamic-programming [3], [7], (8] 2) a-nominal control :2(k)

3) a nominal covariance P(k+ 1) obtained by using t2(k)
P(k)-mnin E{C(k)4.J*(k+ l)Ik} k=N-I1, - - , I, 0 (1) 4 oia esrmn 9k-I bandb sn 2k n

N~h) 4 oia esrmn ~ )otie yuigak n

where J(k) is the optimal expected cost to go from k to N, C(k) is the 0(k), iLe., .9(k+ 1) -1(k)d(k).
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Expanson of(5) about this nominal trajectory results in with the superscript here denoting the matrix element, el the ith Cartesian
Jl)y(k+ l).(k+ i)] basis vector, and

I aPp) (k+I) • .aPU(k+l) i,j =, "•',r+1 [y(kc+ I)-y(k+ I)]'J,,t(k+ l)[y(k+ l)-Y(k+ 1)) pv(i. + 1) - (k+1)
au(k) 8 0(k)

+1/(k+ 1)[ (k+ l)-i}(k)l+- f (k+ l)- (k)]' (20)

2 (0

• Jo+(k 10(k+ 1) -(k)] evaluated at P(k + 1) and 0(k) and rthe numberof unknown parameters.
Now a (suboptimal) dual solution uo(k) with a two-step horizon can be

+tr [J,(k + )P(k+ 1) -15(k + 1))1 (9) obtained from (2) using (18)-(20) and is given in closed form by-
where J, is the zeroth-order term and the cost sensitivities are

r '* u(k)= rEBQ(k)BIi)+Fl-I [E(B'Q(k)(Ay(k) +y,)I k) +fA (21)

J,(k+ l) 1) L k (0 where the elements of the matrx Fand those of the vectorf are given by
L O=(+P(k+ 1)

J,(kr+) AIy "t 1ay +))" (1)2 [ au1(k)au1(k)

(+2) tr (lllk
2 I0 k(k+ 1) 1OHu(k)

[hl- a s i t(k) aat tk) .)

ad Pt ,(k+t ) A) (13) , j=m o. c m, m (22)

-L tr S -- -)--Juk--I

~and
,(k+ 1) _9 La jk+ . (14) on )

aP#(k+~i, 1) fi a ~) ) J,(k+ 1)
md PU/(I + 1) is- the i.jth element of the covariance matrix associated . r ,(k+I)- .:m(k+) I "TP'k+ 1)

with the parameter estimates j(k + 1) and a)(k + 1). 2 2 5 aul(k)
Under the Gaussian assumption fo~r the zero mean noise +Ia2*) 1

y(kr+l)-f1(k+l)-9j, (15) i,_tr J.(k+i)-! J,(k+l ) P + )

where the conditional mean is ' /v
'i=E{H(k)O(k)+e(k+l)-R(k)a(k)llk} , tr J,(k+ 1) l(k) 0 (k)j(k)

t [H(k)-u(k),(k) (16) 2-, _,.j0uj(k) )

n.d the conditional covariance is (23)

and m is the dimension of the control vector, u, is the ith element of the
-)+ l)-j(k+ 1)-v} {y(k+. I) -. (k+ I) '-/} 'l control vector.

=H(k)P(k)H'()+ W. (17) It is clear from (21) that this approximate dual solution uD(k) is a
and using (6), modification of the cautious solution by the cost sensitivity terms. TheWith th, choice f the nominal path as defined earlier s cautious solution is (21) with F = 0 andf = 0. These account for tho dual

(16), and (17), the conditional expected value of (9) is effect. The implementation-of this second-order dual solution is per-.

E{J+ 1  j1fk/} =J,+J(k+ l)(H(k)-fR(k)l](k) formed by the method described below.
Algorithm Summary:

+ I,, J(k+ 1)t+l tr (1,J(k+ ) V1 1) Compute the sensitivity functions J#(k + 1), Ip(k + 1), J(k +
2 2 I), Jd,(k + 1) for (18) with J(k + I) = (k) and the nominal values

a(k), P(k + 1), y(k + 1) defining the nominal path.
+ tr [(Jo(k+ l)(P(k)-P(k+ 1))1 2) Search on (2) with (18) (with the sensitivity functions computedabove, starting with first nominal values t?(k), P(k + 1)] over u(k) to

+ tr [p(k+ 1){P(k+ 1)- (k+ 1))1. (18) obtain an improved nominal for which Jk.k, is lower. This search is
The above expectedfuture cost (18) is a function of the nominal done by selecting a first coarse grid. A grid search is necessary to avoid

Mrameters multiplied by appropriate sensitivity functions J,(k + 1), locking in on a local minimum. Then another grid is chosen about the
Iy(k + 1), Jg(k + 1), and -J(k + 1). Thee sensitivities introduce the latter control over a narrower interval and from a second search u'(k) is
dual effect into (2) which is then used to yield u(k). It must also be noted obtained.
diai the covarianccP(k + 1) is nonlinear in u(k) and is ro yet known. 3) Using u'(k) compute the covariance sensitivities P,(k-+ 1), Pu(k
Hence, a second-order expansion of P(k + 1) is proposed about- a + 1); together with the previously computed cost sensitivities J.(k" + 1),
rominal control a(k) and.a nominal covariance P(k + !) in order to Jp(k + i), Jy,(k + 1), J,(k + 1) obtain F, f defined in (22), (23).
obtain a (suboptimal) dual solution uD(k) in a closed form from (2). Finally, the control to be applied, uo(k), is.calculated from its explicit

This expansion is performed as follows: expression (21).
The iteration described in step2) above is carried out to obtain better

P(k+ I) xP(k+ 1) +F, dee Pu,(k+ I~'k)- a'k)] covariance sensitivities. The -control uD(k) could have been obtained
1p u ) directly from (2 1) by skipping step 2) above; however, as indicated in [13]

and [141, this results in unsatisfactory performance. With this iteration of
+1 (u(k)- a(k)]' Pu(k+I l)[u(k)- :(k) 1 19) • step 2), the "improved" sensitivities yield good performance as shown in

2 the next section.



798- IEEETRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 7, JULY 1989

IV. SIMULATION RESULTS TABLE I
AVERAGE COSTS FOR THE THREE ALGORITHMS IN THE SIMULATION

Performance is evaluated from 500 Monte Carlo runs for the following WITH A LIMITER (I Ul :
< 2.0, 1 u21  2.0) (500 MONTE CARLO RUNS).

controllers: THE SUPERIOR RATE OF ADAPTATION OF THE DUAL ALGORITHM

r 1) heuristic certainty equivalenc,! [31 (with a one-step horizon); IS DEMONSTRATED HERE
2) one-step ahead cautious controller; and Tina H Cautious.. Dual
3) dual controller based upon sensitivity functions (with a two-step s.p.

horizon) derived in Section I1. k k
The plant equations fori two-input two-output system are k Lk Zt k Zt r Zt

y1(k+ )= -au,yl(k)-a 2y2(k)+b,1u1(k)+b 11u2(k)+el(k+ I) (I) - -

I 11405L 14851 3623 3623 6944 6944
y2(k+ l)=-aly(k)-a22y2(k)+balu,(k)+b-2u,(k)+e2(k+) (2) 2 624. 21092 396. 7584 6722 13666

3 3578 24670 3246 0830 4230 17896 -
4 1616 26286 2836 13666 1866 19762

where 5 1354 27640 2505 16171 1492 21254
ereE{e(k)e'(j)} = WSkdiag (H, ); ' 807 28447 2154 18325 953 22207

593 29040 1921 20246 700 22907
Wl=*1,52:; W2=431.  (3) 8 462 29502 1670 21916 582 23489
*W9 397 29899 1623 23539 535- 24024

The true values of the parameters are 10 347 30246 1327 24866 385 24409

al =0.8 bI= -74.84 40 77 34444 281 43810 89 29178

a12=0.1 b 2 = -51.04

a2I = 0.2 b21= 53.31
TABLE II

an =0.75 bn= - 82.56. (4) STATISTICAL SIGNIFICANCE TEST FOR COMPARISONS OF THE CAUTIOUS
AND THE DUAL ALGORITHM IN THE SIMULATION WITH A LIMITER

Only the gain parameters (B matrix) are considered unknown for (IulI - 2.0, 1 U 2.0) (500 MONTE CARLO RUNS)
testing the dual effect and their initial estimates were generated as M(bu,
b2 ), ij = 1, 2. This choice of system was motivated by the helicopter -tn T ti t.atovt
vibration study [13]. sto; Seaoiltio 1wroyoant

A large initial uncertainty is chosen in the parameter estimates in order k 7I 910
to test the learning capabilities of the various adaptive algorithms. The 1 .8.1 .91
cost weighting matrices are 2 -5.3 .69

3 -2.2 -30
Q(k) = diag (ql, Q2); q, = 1.0, q2 = 1.0. (5) 4 35 34

5 3.3 40

6 6.0 56
The desired response is 7 6.3 64

a 6.5 65
y,=(-18 801'. (6) 9 .5 67

10 5.7 71
For the model chosen (1)-(6) the optimal control solution in order to 11 6.3 . 76

reach a steady-state value of y, in (6) is 12 5.6 70
13 5,9 82
14 5.2 62u'*= 1.0, ua= 1.0. (7) 15 5.5 79
16 4.9 70
17 4.5 78

In terms of the notation of (I) and (2) 18 4.4 74
19 4.4 760(k) - fall a,2 6,,(k 621(k) a , a2o, ,(k) 6n(k)]' (8)1 201 4,3 1 7 1

and

H(k) y [yi(k) -y,(k) u,(k) u2(k) 0 0 0 0 (9)0- 0 0 -0 -yt(k) -yl(k) ul(k) u2(k)

The controllers are implemented with a sliding horizon for a total of 40 caution and probing to learn the parameters fast. Fig. I compares the
time steps. The evaluation criterion is performances of the three algorithms for 500 Monte Carlo runs. Both

Table I and Fig. I demonstrate the superior rate of adaptation of the
Ck=(y(k+ i)-y,)' Q(k)(y(k+ l)-y,). (10) dual algorithm.

Table I provides a statistical significance test and shows the Improved
A. Analysis of the Monte Carlo Average Costs performancesof the dual solution from time step 4) onwards with at least

-98 percent confidence.
Comparisons are made between the performances of the cautious and Table I indicates the percentage of runs where the cost exceeds 2000

the dual algorithm on the.system and a statistical significance, analyis is for the two algorithms. This threshold of 2000 is selected from a sample
done using the normal theory approach (i.e., it is assumed that the central -distribution study of the cost at each time step. Table IV shows the
limit theorem holds for the sample mean from a large number of runs) -perentile test- [14, [15] comparing the cautious and the dual solution.
[14]. Tables I-IV contain the.results of the simulition runs. Table 1 They clearlyindicate from time step 4).onwards the light tailed nature of
compares the average cost Ct over 500 Monte Carlo runs for the first 40 the distribution of the cost yielded by the new dual control algorithm.
time steps forHCE, cautious and the dual algorithms, with a control
limitir IuJ s 2, Im 1, 2.' ,- -B. Individual Time History Runs

Clearly it is seen that the cumulative average cost is the lowest:for the - R
dual controller. The HCE incurs an excessive penalty in -time step-1) Analysis of the Monte Carlo aerage cost indicates the improvement
because of lack of caution. The 4utioui controller is overly cautious and -offered by the dual solutidn; It provides no information about the cautious
exhibits slow convergence. However,-the dual controller incurs -less control's-turi g-off'phenomenon [161, [18]. Hence, a careful investiga-

penalty in time step-1) than the HCE and makes a-judicious choice of tion of the individual runs ii required to examine these occurrences.
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% TABLE III CAUTIOUS'AND DUAL
COMPARISON OF THE TAILS USING THE CAUTIOUS AND THE DUAL

ALGORITHMS IN THE SIMULATION WITH A LIMITER CAMIriOtS
(luaI u 2.0, 1ull < 2.0) (500 MONTE CARLO RUNS) .....

Time Percentage of runs i
Step .tich exceed 2000

k Cautious Dual

1 96 76 .........
2 60 52
3 43 40
4 33 25
5 31 17
6 22 10
7 22 8

S19 7
9 16 3

10 12 211 1.2 ].,2 8 4,

12 10 1.4 11 0 to 20 30 40
i t 13 1 1.4,'. te

1414 m Stop
15 8 0.4 Fig. 2. Time history of output I using the cautious and the dual algorithms

16 .6 0.4 for run 90 (500 Monte Carlo runs: Iul 1 2.0; 1u21 : 2.0).
17 6 0.2

is 6 0.4
1.9 5 0.4
20 5 0.2

CAUTIOUS AND DUAL

TABLE IV CUM=- cAlrous
PERCENTILE TEST FOR COMPARISONS OF THE CAUTIOUS AND THE DUAL

ALGORITHMS IN THE SIMULATION WITH A LIMITER / A .

(lull - 2.0, fuzI : 2.0) (500 MONTE CARLO RUNS)

Time
Ste X test atatistic

3.
4 10
5 19
6 23
7 32
8 35
9 57
10 37
11 -40__________

12 40 0 10 2b 30 40
13 40

,, 14 16 Ti Step

is 32 Fig. 3. Time history of output 2 using the cutious and the dual algorithms
16 11
17 16 for run 90 (500 Monte Carlo runs; lul - 2.0; Ju2f < 2.0).
18 16
19 18
20 25

CAUTIOUS AND DUAL

CAUTIOUS, DUAL AND HCE CAUTIOUS
- ,. -,, -UAL

otlr. I "'"'' '""..

§.

VICE

" 10 20 30 '43:

Time Step
Fig: -1. Time historyoof the average cost using th e '0 10 20 30 40

equivalence, cautious, and the dual controllers. (500 Monte Carlo runs; Tle StepFig:r 1 Tim -5toy 2' .)e a ragiost usn dh theiti dualalgintym

luil. < 2.0, 1Ud U 2 0.)-The up.rior rate of-adaptation of the dual Fig. 4. Time history of control I using the cautious andthedualalgoriths
I-algorithm is demonstrated here. for run 90 (500 Monte Carlo runs; Iu1, 1 2.0; 1 ull 2.0).
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CAtJIDUS AND' IWAL over the cautious controller. Trhe key improvement is in the avoiding of
situations like turn-off and slow con vergences, typical of ihe cautious

CN-U solution.
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TIME-REVERSION OF A HYBRID STATE STOCHASTIC DIFFERENCE SYSTEM
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ABSTRACT Our problem falls in the category of how to

reverse a Markov process in time. The Markov

The reversion in time of a stochastic difference property implies that the past and the future are
equation in a hybrid space, vith a Markovian independent under the condition that the present
solution, is presented. The reversion is obtained state is known (Wentzell, 1981). This invariance
by a martingale approach, which previously led to with respect to the time direction is the key
reverse time forms for stochastic equations with property used in time-reversion studies.- There are
Gauss-Markov or diffusion solutions. The reverse two types of studies that deal with thiv problems
.time equations follow from a particular a classical type and a systems-type. The classical
non-canonical martingale decomposition, while the type of study assumes that the transition measure
reverse time equations for Gauss-Markov and or the generator of a Markov process is given and
diffusion solutions followed from the canonical then tries to characterize the transition measure
martingale decomposition. The need for this in reverse-time, direction (Nagasawa, 1964; Xunita
non-canonical decomposition stems from the hybrid and Watanabe, 1966; Chung and Walsh, 1969; Azima,
state space situation. Moreover, the non-Gaussian 1973; Hasegawii, 1976: Dynkin, 1978; Williams,
discrete time situation leads to reverse time 1979).
aquations that incorporate a Bayesian es mation The systems-type of study assumes that a"
step. stochastic equation with a Karkovian solution is

given for which it tries to characterize the
1. INThROoDUCTION time-reversed equation. The first tie-reversed

equations were obtained by orthogonality
This paper adresses the problem of time-reversion arguments, for the linear Gaussian situation
of a hybrid state Harkov process which is given as (Ljung and Yailath, 1976; Lainiotis, 1976). For
the solution of a stochastic difference equation. general diffusions, it has already been pointed
The desired result is a similar equation but out by Stratonovich (1960) how to obtain the
running in reverse-tize direction while having a reversed-time equations by actually following the
solution that is respectively pathwise and in classical approach: from a stochastic equation via
probability law equivalent to the solution of the the csnerator and the time-reversed generator back
forward equation. to time-reversed equations. A truly systems-type
The motivation to study this problem stems from of study has been started by Verghese and Kailath
two different kinds of application. The first is (1979), by showing how for a linear Gaussian
to approach the solution of a nonlinear smoothing system a more direct martingale approach leads in
problem by a merging of the estimates of two a simpler way to time-reversed equations.
nonlinear filters: one filter matches the original Moreover, by this approach it was possible to
model and is applied in the usual time direction obtain a reversed-time equation with a pathwise
while the other filter matches the tie-reversed equivalent solution. Early elaborations of these
model and is applied- in the reverse-time ideas led, along different routes, to
direction. The second application is the time-reversed cquations with pathwise equivalent
determination of a rate distortion theory lover solutions (Anderson, 19821 Castanon, 1982:
bound for a discrete-tise nonlinear filtering Pardoux, 1983). During subsequent studies, quite

" problem by the method of Galdos. This method is large classes of stochastic differential equations
based on Bucy's representation formula and and their reversed-tie equations have been
requires a Monte Carlo simulation in reverse-time identified (Elliott and Anderson, 1985; Pardoux,
direction of model matching trajectories, starting 1945: Elliott, 1986a, 1986bl Haussmann and
from a prespecified end point (Galdos, 1981; Pardoux, 1986: Pardoux, 1986). Recently these
Washburn et al., 1935). For both of these two results have been extended by using the Girsanov
applications it is necessary to have a transformation of Brownian motion (Picard, 1986;
time-reversed difference equation for which the Protter, 1987). Obviously, this Girsanov approach
Markovian solutions -are in probability law can not be applied to discontinuous or
equivalent to the original solution. discrete-rtie processes.

To give an idea of why there is an additional
problem in using a martingale approach to the
reversih of an equation with a discontinuous

This research has been supported by AFOSR Grint solution, te give a-brief outline ot the approach.
84-00212, while the first author vts on leave at The rartingale approach roughly consist% of
the University of Connecticut. checking if the time-reversed driving noise

''



sequence can be decomposed in a suitable of pt iL significantly larger than the state space

reverse-time martingale part and its complement of $t, this is a rather brute force traneformation

and next, if such a decomposition exists (jeqod of (l.a). A more elegant transformation of (l.a)

and Shiryaev, 1967; Jacod and Profter, 1988fa, to the more common equation consists of

selecting such a decomposition. The final step is substituting (l.b) in (l.a), which yields an

to characterize both the martingale part and its equation of the following form,

complement. In contrast with a continuous process xt+l " a'(@txt',WVvt).

such a decomposition is not unique for a , Instead of a state space expansion, there appears

discontinuous process (see for example, Jaeod and an additional noise term, vt. From the latter

ShLryaev, 1987). This makes the selection of'a representation, it follows immediately that the

suitable martingale decomposition far from trivial processes (0t,Xt) and (0t) are Markov processes.

in the hybrid state space situation, because a The latter transformation clearly shows that (1.a)

less good choice yields unnecessarily complicated is indeed more general than the more commonly

reverse-time equations. This complication is studied equation with first order dependence of

presently unsolved, neither in continuous-time nor (etJ. With the study of this more general

in discrete-tie. It will be solved in the sequel equation, we also anticipate the time-reversion

for quit* general difference equations in a hybrid results obtained. In the sequel it will turn out

space. With that result we subsequently reverse that a reverse-time equation of (l.a) has, in

the considered difference equation in time. general, a second order dependence on the

time-reversed (0t), even when a(ot+l,ft,xt,wt) is

The paper is organized as follows. In section 2 we et-invarLant. In view of this, it is natural to

define the hybrid state stochastic difference study the above more general form.

equation that will be considered and shortly

compare its time-reversion with the time-reversion In the sequel we consider the time-reversion of

of a linear Gaussian equation. In section 3 we system- (1) under the following assumptions

specify the time-reversion requirements. Next, in

sections 4 and S we consider, respectively, the Asu

pathwise time-reversion and the in probability law a(5,g,.,w) has an inverse a*:N2XnX3PRn, such

equivalent time-reversion. In section 6 we discuss that for any (0,1,W Cr Xp#

the results obtained. a'(e,1a(S,1,w,w)-x; all XER
n .  (2)

2. THE STOCHASTIC DIFFERENCE EQUATION CONSIDERED A,2
b(.,v) has an inverse b*:XxR.N, such that for.any

The stochastic difference equation we consider in VER,

the sequel is the following system, on an b*(b(e,v),v)-6* all $EX. (3)

appropriate stochastic basis and a discrete time

interval (O,T) * Hx(O,T], T<w, Assumptions & and ".2 suggest to transform

Xt+ 1 - a(0t+l,0t,xt,wt), (l.a) (1.a,b,c) to the following time-reversed model,

ot+l - b(ot,vt), (l.b) Xt'a*(et+,Gt, xt+lWt),

yt - c(dt,xtWt,ut), (l.c) t'eb*(et+lvt),
where (wt), Cut) and (vt) are i.i.d. standard Ytoc(0t'xt'wt'Ut)

•

Gaussian sequences of dimension p, q and 1 Because (wt,vt) and the future (- reverse-time

respectively, the initial distribution of (x0 ,8O) past), st+l - #((y,X,,e)1 sE t+l,T3), are

has the density mass function p0 , and dependent, this is not the time-reversed system we
"': ashould look for. Unfortunately, it is not clear

(wt,vt,ut) is independent of (x0 ,00 ). Further Xt, how to continue from here. To develop some

st and yt have respectively kn-, X- and Rm-valued insight, we take a quick look at the

realizations (with X a countable set), while a, b time-reversion of a linear Gaussan ytem.

and c are measurable mappings-of appropriate

dimensions such that system (1) has a unique Linear Gaussian example

solution for each initial (x0 ,e0 ) with consider the following linear Gaussian system

P oXO'T,e)O. The mappings a, b and c are Xt+l - AXt + Owt.

time-invariant for notational simplicLty only. Assumption .I Implies that A is Invertible, by

which

The second order dependence of (l.&) on (st} is Xt - A
"1 

(Xt+l - Bvt.

quite uncommon (Slom, 1985). Obviously, (1.a) Obviously wt and the future 5t+l are dependent,

reduces to the *ore common situation of first which requires a martingale decomposition of lt.

order dependence, only if a(#tal,st,xt,wt) is In this linear Gaussian case the canonical

Invariant w.r.t. either ot or St+l . The martingale decomposition Is the appropriate one.

Lnterproetation of (l.a) as an equation with a It consists of decomposing wt in- its reverse-time

second order dependence on (0t) suggests the predictable part, Z(vtjSt+l), and its complement

substitution of At+ln(0t+l,et) in (l.a). On doing w't;

this (l.a) reduces to the more common equation, , Wt - Z(Wtjft+1) + W t .

and it follows immediately that (tt) and (ft,xt) The problem Is nov to write the predictable part

are Marko processes. However, as the state space as a function of xt+l (if possible) and to
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characterize the covariance of wet. As pointed'out R "(tvt+lutttlQt), (4.a)

by Vergheso and Kailath (1979) it follows readily
from orthogonality arguments that It - 5CtUt~i,~t~iQt), (4.b)

Z(wtlt+l) " E(wtlxt+i)t Vt " (t,1t+l'1t'2t+'Rt
'
Q
t 'u t )

# (4.c)

while the fundamental formula for LLSE estimation

yields where E, 5 and a are deterministic mappings of

E(wtlxte1 ) " 3T R 1(t+l)xt+, appropriate dimensions and (9t,Vt) is a noise
COV(Vet) I- BTR I(t+I)B# N sequence to be specified. For a better

where R(t+l) is the covariance of xt+ .  . understanding of (4) notice that the substitutions
By a straightforward substitution of these reMlts of (4.a) in (4.c) and of (4.b) in (4.a,c)

ve obtain transform (4) to a reverse-time system of the more

Xt - A-
1 

(Xt+l - B BTR'
1

(t+l)Xt+i - awkti, common form:

which yields the desired reverse-time system:

Rt - A-
' 

(Rt+l - B BTRI(t+I)Rt+l - 80t). t - (tet ,tgltt

The orthoqonality arguments and the LISE at - B(tUt+l',t+l
# 9

t)#

estimation step, used in the above procedure, 2t, " (t#Nt+lJRt+l#Q
t'
9
t 'ut ) ;  

all te(O,T-1].

prevent a straightforward extension of that

procedure to equation (1). In the sequel we To be a useful reverse-time system, (9t,Ot) should,

replace the orthogonality arguments and the LLSE as much as possible, be independent of the future

estimation step respectively by Harkov duality (- reve*sed-time past) information field

arguments and a Bayesian estimation step. Besides st+l a ((?s#,R#1ssQsus): me(t+l,T]).

this, we have to select an appropriate martingale A minimal requirement is then, that the

decomposition. Following the linoar Gaussian case, conditional expectation of (Qtgt), given it+l,

the canonical artingale decomposition seems a

good candidate: should be zero. Because it is a decreasing

(Wttvt).(Wt*,vt*)+E((vt,vt)lft+l. •sequence of sigma algebras, the latter can most

Unfortunately, this decomposition leads to very easily be put in martingale language (see Elliott,

complicated elaborations of the Baysian 19821 Kumar and Varaiya, 1936, and the definitions

estimation step. To avoid these complications, we below):

use in this paper the following decomposition: (Qt,lt) in (4) should be a reverse-tile Hartinalle

(Wt*,Vte*) - (wtvt) - (VtVt) ' Difference seauenCe w.r.t. 9 *

with: 4t a E(vtl5t+l) and
Ot E~t15~l't).1 Definiion

T a Etl t+lVt} i Assume (0t; te(O,T]) is an ingreAsifl sequence of

The main step, that ust be carried out, is to information fields, i.e. 5.. Cas; any sG[1,T).

prove that the latter is a martingale A random sequence,((t) is said to be a Martingale

decomposition, and to elaborate on the Bayesian Difference sequence .r.t. pt iff for all tE(O,T),

estisation step. For the presentation of these (i) 6 is St-measurable,

results a constructive approach is taken, starting (ii) E(Ittl)<0,

with a precise description of the time-reversion (iii) E(ttlos)-0 a.s.; for all se(O,t-1).

objectives.

2 Definition

. TIKE-REVEiRSIOK OBJECTIVES Assume (It; tc(O,T1) is a A1eAeim sequence of

We want to obtain a time-reversed verion of 
information fields, i.. 5scss- 1 1 any seElT).

A random sequence (tt) is said to be a

system (1), such that its solution, ({t,Rt,Ut), is reverse-time Hartingale Difference seaugnce w.r.t.

in some sense equivalent to (yt,xt,*t). To make it iff for all tE(O,TJ,

this objective explicit it needs both a (i) t is $t-measurable,

specification of what we mean by a time-reversion (ii) E(I tI}<-,

of (1), and a specification of the desired sense (iii) Z(Jt1Is)-O a.s. ; for all sEGt+l,T).

of process equivalence. Having specified the desired type of reverse-time

By a reverse-tine system we mean a stochastic system, the next stop is to specify the types of

difference equation which starts at time T and equivalence of solutions of systemX (1) and (4),

runs in negative time direction on the interval in which we are interested. For stochastic

(0,T]. We require from a ti*e-reversion of system- processes several useful types of equivalence have

(1) that it does not change the state space and been defined and named in the past. We restrict

that the solution of the resulting reverse-time ourselves to the two most important types of

system represents the process ( More equivalence and their unambiquoui names (Elliott,

19821 Jacod and Shiryaev, 1987):

specificly, ({t,gt,Vt) must be the solution of the - indistinguishable,

followirn system of stochastic difference - equivalent in law.

equations, all tG(OT-l): Definitions are given below.
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2 DefinitLoa duality of the Harkov property, (0tOt) is

TWo processes (t) and (itI. t6(O,T], aresLd to conditionally Independent of $t+2 given

be Indistinguishable it they are defined on ,he (xt+l*Ot+l)"

same probability space (a, ,P) and -

P{'tt "t , all tE(0,T) ) 1. (5) Assume (wt,vt), 10t,4t) and (wt*,vt*l satisfy (1)

and (9). Then (wt*,vt*) is a reverse-time

Two prnoses anartingale difference sequence w.r.t. $t*, while
TWO processes ("t) and ('t). tE0,] are'said to ~ ad~sta

be ecuivalent in law, if they have the samestate Ot and Ot satisfy:

space, 2, and for all 0<tl<t 2<... <tOT, Ot a Z(vtlet+l1Ot,Xt+l) (l0.a)

P(t ,..1t)EdX) - P( tl,.., )edX) , (6) 1 )(vtlt+l#Xt+l), all t6(0,T-1). (l0.b)

P( 1 tk t t 
9dX)

for any k and all measurable dXCX . Proof: See Blom ar Bar-Shalom (1989).

For discrete-time processes (5) is satisfied if

and only it, for all te(O,T), (t-rt almost surely. Theorem 5 implies that w and t can be written as

Our objective in the sequel is to obtain Vt - f(tGt+l',Oxt+l), (1l.a)

time-reversed systems of type (4), with solutions Ot - 9(tet+lxtcl)" (1l.b)
that are respectively IndistnJhnbg9tL U and Substitution of (9.a) and (1.a,b) in (7.a,b,c)
eauivalent in law w.r.t. the solution of (1). yields

4 IHDISTINGUISHABLE TIHE-REVERSIOH xt - ;(tCttl,0tXt+lW*t), (12.a)

In this section we derive a type (4) version of - b(t,*t+ltxt+lt), (12.b)s ystem (1), such that their solutions, Yt "
c(t,*t+l,*t,xt+lXt,V t,ut). (12oC)

with,
(pt'Rt,et and (ytxt,ot), are indistinguishable,a nd illustrate these reults for a Jump-liner a(t,9,I ,x,w) - *(e,s ,3,w*+f(t,*,t,x)), (13.a)

example. b(tO,x,v*) - b*(e,v*+g(t,,sx)), (1.b)
The first step of our derivation consists of asubstitution of (2) and (3) in (1), to arrive at c(t,D,q,x,zew u) - c(I,z,w*+f(t,D,q,X),u). (13.c)

the in section 2 discussed time-reversed system, The above result is summarizsed by the following
corollary.

xt - a*(et+l,et,xt+,wt), 
(7.a)

at . b*(et+,vt), (7.b) 6 Corollary

Yt " c(Ot,xt,wt,ut). (7.c) Under assumptions A.1 and A.2, the solution
Although (7) and (4) look similar, one requirement
is not met: the driving noise in (7) is not a nYt uSt of the reverse-time system (4) is

reverse-time Hartingale ifference sequence v.r.t. Indistinguishable from the solution (YtXtOt) of

the future information field system (1) if

5t e ((Y5 ,x5 es,ws,vsUs); sC(t,TJJ. (8) () (T,'R,T) " (yT,XTOT) a.s.,
Therefore our next step is to Introduce a
particular reverse-time Hartingal9 Difference (II) 1, 5 and a satisfy (13.a,b,c),
sequence, (wt*,vt*j, as follows, (III) (9t,Qt) - (wt*#Vt*) &.0. ; all tG(0,T-l],

(Wt"'Vt) I (vttvt) - (Ot, ) with w*t and v*t satisfying (9.a) and (10).

with JUmo-linear example

vt 5 E(vtI5t+l), (9.b) To illustrate the results obtained so far, let us

Ot a E(wtlat+lvt); all tE[O,T-1). (9.C) consider the particular situation of a linear

and (VT*,VT*).0. system with first order Markovian switching
coefficients and observation noise independent of

Notice that the definition of Ot differs the system driving noise. Both a(e,Nxw) and
significantly from the reverse-time predictable c(%,x,v,u) are then linear in (xw), while the

process -(wtJIt+l). As such the decomposition in first is i-invariant and the second is w-invariant,
(9) is not the uniqua canonical decomposition (see by which-system (1) simplifies to,
Jacod end Shiryaev, 1987). The introduction of Xt+1 - A(et+l)Xt + 

8
(et+l)Wt,

this non-canonical decomposition is a crucial step Ot+l - b(et,vt),
nscessary for obtaining the time-reversion of Yt - G(ft)xt + H(et)ut.

hybrid stat* system (1). Then -from Corollary 6 we readily find the

indistinguishable time-reversed system,
In the sequel we verify that (vt*,vt*l is indeed 4 Xt -A

1
(t+) (Xt+l - (et+l) (Ot+wVt)l,

reverse-time Martingale Difference sequence w.r.t.

$t, and thus also w.r.t. st* a st u *((w*,vs'); ,et - b*(@t+l,Ot+v*t),
sEftT)). Meosever we show that, due to the Yt - G(Ot)Xt + M(Ot)ut,



uere (w*t,v*t) is the reverse-time MD-sequence of Pv*tlet+,,Ot,xt+1 (WI.)

Theorem 5, tf(tGt+ie-,xt 9), Vt-(tt+Xt~l) - (14.a)
and f, g and b* are according to (11) and (13.b). wtlet+lGt'xt+l((14.°)
The difference equation for xt is similar to the where Ot satisfies (1O.a).
one for the linear Caussian example in section 2. With this our remaining stop is to characterize

But due to O, it may even be nonlinear nx the density at the right-hand side of (14.a) by

At the end of the next section we will show that applying Pa..s formula.

there are some further simplifications po5sibik
for this example, in case of in probability law 8 Proposition

equivalence. Under asumptions A and A, the distribution in
(iv) of Theorem 7 permits a density which is

S. EQUIVALENT IN LAW TIME-REVERSION characterized by (14.a) and,

In this section we derive conditions under which Pwtiet+l,et,xt+(
' 1'x ) - IVxa*T(0,,ix')I

the solutions ot (1) and (4) are equivalent in law, .c(6,,x) p t(.) p t(3*(8,"',x,.)hln)), (14.b)

and discuss these results for a jump-linear t

example. So far our line of reasoning is quite with vx the gradient and c either a normalizing

similar to the martingale approach of factor or zero iff p (xI,1)-0.
time-reversing a diffusion. However, things are xt+llt+lt'

quite different now we require equivalence in law Moreover,

only. The reason is that while in the diffusion P(t-Alt+l.#,2t+lX) - P(81e t+t-0)"

situation this requires that dvt and dwt are Px .# . # (XiS ,e) p (XIS). (15)

equivalent in law, no similar simple results hold

in the discrete-time situation. Instead of this, proof: See Blom and Bar-Shalom (1989).
we identify the relation between conditional laws

of ;t and wt by a Bayesian estimation step. Noxt Jump-linear example

we characterize f and the required law of w*t. ror a linear system with first order Markovian

switching coefficients we arrived, in section 4,

7_Iheorg at the following reversed-time equation:

Under assumption A.1 the solution (7t,kt,at) of xt - A'l(dt+l)(Xt+l - B(et+l)(0t+w*t)J,

reverse-time system (4) is equivalent in law w.r.t. with w*t the reverse-time HD sequence and

the solution lyt,xt,at) of system (1) if, 0t.E(wtjet+let.xtl1. Because a* is linear .in

(i) P((RT9,T)6dX) - P((YT,xT,BT)edX)} (x,w), itr gradient w.r.t. x is w-invariant, by

for any measurable dXCRSxRnxK, which proposition 8 yields

(ii) I and a satisfy (13.a,c), Pwtiet+I,Ot,Xt+l(wl(A1(x) X

(iii)- Cl(,'qx)pwt(w)pxt (A()(x-B(O)wl').
in spite of the simplification this is a form

P(6t.4jat+l-0'xt+j-x}# which is in general quite complex, by which Ot
(iv) P({tedXl(Rt+l,t+l,t)-(x,,,))" still may be a nonlinear function of xt+l.

- P(wt*dX|(xtldt+ ,Gt)-(xGl)}, obviously, this type of complexity could have been

all (x,,1,t)CRnxN
2 x(0,T-lj and measurable dXCRP, expected, as it is well known that a discrete-time

with w*t and f satisfying (9.a), (10.a) and (11.a). Bayesian estimation step leads to nonlinear
equations, unless the prior densities involved are

Proof: See Blom and Bar-Shalom (1989). Gaussian.

our remaining problem is the characterization of 6 CONCLUOING REHARXS

the conditional law of w*t. As this is actually a
discrete-time nonlinear filtering problem, it can We considered the problem of reversing the Markov
be done by applying Bayes formula. We do this solution of a nonlinear stochastic difference
under the following additional assumptions: equation in time. The nonlinearities were due to

nonlinear coefficients and a hybrid state space,
A.2. The a priori distribution of (xt,et) i.e. a product of an Euclidean space and a
permits a density-mass function for all tE(O,TJ. discrete set. For simplicity, it was assumed that

the process in the discrete set satisfies the

A4. a*(O,n,x,w) is once differentiable in xcRn Marko property. Subsequently we gave a precise
for all description of our time reversion objectivest the

(8, ,W)EX 2 xRP. development of time reversed difference equations,

of ;orms similar to the original equation, but
If the distributions in (iv) of Theorem 7 have driven by reversed-t1me martingale

density-mass functions then it can easily be difference sequences, such that their solutions

verified tat (iv) implies, are respectively indistinguishable from and in
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prcbability law equivalent to the solution of the R.J. Elliott, B.D.O. Anderson, Reverse time

original equation. Following this the derivation diffusions, stochastic Processes and their
of the indistinguishable reverse-time equatjLn was Applicationo, Vol. 19 (1985), pp. 327-339.
performed. The main new theorotical result is the J.1. Galdos, A rate distortion theory lower bound
introduction and evaluation of a non-canonical on desired function filtering error, iEEC Tr.
(Jacod and Shiryaev, 1987) reverse-time martingale Information Theory, Vol. 27 (1981), pp. 366-368.
decomposition, which is appropriate to the hybrid H. Hasegawa; On the construction of a
state space situation. In contrast with this, all time-reversed Markov process, Progress

previous reverse-time equations are based on a Theoretical Physics (Japan), Vol. 55 (1976), pp.

canonical martingale decomposition. After th-At, It 90-105.

was shown how the in probability law equivalent U.G. Haussmann and E. Pardoux, Time-reversal of

tine reversed system can be obtained by diffusions, Annals of Probability, Vol. 14

introducing an appropriate Bayesian estimation (1986), pp. i188-1205.

step. As expected, this Bayesian estimation step J. Jacod, P. Protter, Time reversal on L4vy

leads to closed form equations whose processes, Annals of Probability, Vol. 16

disensionality often complicates further (1988), pp. 620-641.

applications. In view of this, in Blom and J. Jacod, A.M. shiryaev, Limit theorems for

Bar-Shalom (1989) we elaborate the Bayesian step stochastic processes, Springer, 1987.

for linear systems with Markovian switching P.R. Xumar, P. Varaiya, Stochastic systems,

coefficients (jump-linear systems), and apply the Prentice Hall, 1986.

the results to smoothing a trajectory with r-!dden H. Kunita and T. Watanabe, On certain reversed

manoeuvers. processes and their application to potential
theory and boundary theory, J. Math. Mech., Vol.
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A NEW CONTROLLER FOR' DISCRETE-TIME STOCHASTIC SYSTEMS
WITH MARKOVIAN JUMP PARAMETERS
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Abstract. A realistic stochastic control problem for hybrid systems
with Markovian jump parameters may have the switching parameters In both the
state and measurement equations. Furthermore, both the system state and the
jump states may not be perfectly observed. Currently the only existing
Implementable controller for this problem Is based upon a heuristic multiple
model partitioning (MiP) and hypothesis pruning. In this paper we rresent a
stochastic control algorithm for stochastic systems with Mlarkovian Jump
parameters. The control algorithm Is derived through the use of stochastic
dynamic programming and Is designed to be used for realistic stochastic control
problems. i.e., with noisy state observations. The state estimation and model-
Identification Is done via the recently developed Interacting Multiple Model
algorithm. Simulation results show that a substantial reduction In cost can be
obtained by this new cortrol algorithm over the (MMP) scheme.

Keywords. Stochastic control. Dynamic programming; Hybrid systems;
Multiple model partitioning; Markovian jump parameters.

1. INTRODUCTION More recently In 1S2 a feedforward/feedback

An Important problem of engineering concern controller was presented for the continuous-time
Is the control of discrete-tme stochastic problem with a completely observed system state
systems with parameters that may switch among a and where the "modal Indicator" Is measured with
finite set or values. In this paper we present a high quality sensor. In-[M61 the
the development of' a controller for discrete-time continuous-time jump-linear problem Is considered
hybrid jump-linear Gaussian systems. Here the where the system state and "modal processes" are
state and-measurement equations have parameter perfectly observed. The optimal regulator wasmtatres whiheauremt f utions fave ara r obtained and notions of stochasticmatrices which are functions or a Markov stabilizablilty and detectability were Introducedswitching process. The Jump states are not to characterize the behavior or the optimal
observed and only the state Is observed in the system on long time Intervals. In [M71 the
presence of noise. c6ntinuous-tUme jump-linear problem with additive

Along with presenting a desirable practica, and multiplicative -noises and noisy measurements
control algorithm we also -point out an of the plant state was considered with the plant
Interesting-theoretical phenomenon, We show that mode assumed perfectly observed.
there Is a natural connection between the In (Ell a sufficient stability test Is given
Interacting multiple model (I1M) state estimation for cheking the asymptotic behavior of the error
algorithm [Bt| and the control of Jump-linear Introduced by the averaging of hybrid systems.systems. Thus the IMM Is the state estimation In [Mu1 the continuous-time jump-linear problem
algorithm of choice for use In these types of with non-Markovlan regime changes was
control problems. considered. A control scheme was presented for

Systims which pertain to the jump-linear the case of perfect ovservations of. the system
modelling methodology are found In many areas, staie and pladt regime.
Systems of a highly nonlinear nature can be In [C31 a discrete-time Markovian jump
approximated by a set or linearized models [M3, optimal control problem was.considered. The
VI, VZ). A failure in a component of a dynamical controller Is for the case Of perfect system
system (or subsequent repair) can be represented state observations and known form process. They
by a sudden change in the systems parameters 192. derive necessary and sufficient conditions for
St, Wi]. Also economic problems,.which can be the existence of optimal constant control laws
modelled-by parameters that are subject to sudden which stabilize the controlled system as the time
changes due to shortages In Important materials horizon becomes Infinite. Through examples they
(IG2. And as Is noted in (M61 there also exist show -the Interesting result that stabilizability
applications to the'design of control systems for of the system in each form Is neither necessary
large flexible structures in space, nor sufficient for the existence of a stable

There has been an extensive amount of -work steady-state closed-loop system.done In this area and on-the related-pioblem of In yI a discrete-time system with perfect
controlling stochastic dynamic systems with stateand mode Information was considered. A
unknown, tlme-Invarlant-parameters. We refer the controller was presented which Is stabilizing In
reader to the IT31 and 1G31 for a list of the mezn square exponential sense.
references and a discuSsion of their scope and As pointed out In [G21 we eanrally cannot
applications, determine the optimal jump-linear quadratic

Research sponsored under Grant AFOSR-88-0202. Gaussian closed-loop control law analytically



.vl s. r .wo-stp problem. In order to compute J-
the optimal control extensive numerical search E C(O,,-E x(N)QiN)xN). x(k)'a(klx(kl

,methods must be employed and thus one would like +u(k'R(k)u(k)1 ]
to find simpler subopt!mal control schemes. (2.1)

Currently the only existing Implementable
controller for this problem (switching parameters where Q(klzO for each k-Oi,...N and and It Is
In the system state and measurement equations and sufficient that R(kJ>O for each ksO,i,...,N-I.
noisy state observations), is the one discussed The dIscrete-time system state and
In (T31 and Is of the OLOF class. This algorithm measurement modeling equations are
Is based upon a heuristic multiple model
partitioning (KKP) and hypothesis prunIng. The x(k) F[(k))x(k-i) + G[K(k)Ju(k-l)
IMP approach, being simple and straightforward to * v(k-I,M(k)l (2.2a)
Implement, Is a reasonable choice for the unknown
parameter problem (LII, and as shown in (T31 it z(k) HIh(k))x(kl + w(k.M(k)! k-O,1,2.... (2.2b)

works well for applications Involving switching where x(k) Is an nxl system state vector, u(k) is
parameters In the state measurement equation an pxl control Input, and 4ik) Is an mxl system
only. For the non-switchlng parameter problem state observation vector. The argument K(k)
the operating mode Is determined to a high sente temon "at te argunent duin
probability In a relatively short period o time denotes the model "at time k" - In effect during

and the lMP approach gives the linear quadratic the sampling period ending at k. The process and

Gaussian optimal control. measurement noise sequences, vlk-l,t1k]) and

For switching parameter problems a different w(k,M(kl]. are white and mutually uncorrelated.
situation exists. Here because of the switching The model at time k Is assumed to be among a
the operating mode may not be determined to a finite set or r models
high probability. The proposed approach to
deriving a suboptimal control scheme Is to start H(k) € (1,2.,r (2.3)
with the solution to the optimal control problem
via the use of stochastic dynamic programming. for example
By utilizing dynamic programming and making
appropriate suboptimal assumptions the use o F(r(k).J) - F (2.41
numerical search methods has been avolded. We
thus have developed a multiple model control vik-tM(k}-Jl - Yh 1.V1 (2.5)
scheme which has the following desirable
properties: (a) It gives the optimal final w(KK(kI-j] - kj.1Wj1 (2.61
control, (b) the algorithm utilizes the IKH state
estimation scheme, and [c) It has the same I.e., the structure of the system and/or the
property as the KMP approach In that It gives the statistics of the noises might be different from
optimal linear quadratic control under the model to model.
assumption of a perfectly known model history The model switching process to be considered
sequence (which Is howevir an unrealistic here Is of the Harkov type. The process Is
assumption for this class of problems). specified by a transition matrix with elements

For comparison purposes we Implement the spe
"switching parameters In the system state pq. Let
equation" controller, proposed (but not tested) z.
in T3]. We show via example that a 14 =z(O),zl),...,zk),u(O)u(l)...u(k-1)) (2.7)

statistically significant reduction In cost can
be achieved through the use of our controller denote the Information available to the
which also belongs to the OLOF class, controller at time k (i.e. the control is

The paper is outlined as follows. In section causal).

2 the problem formulation Is given. In section 3
an Interesting 'connection between the IK* state 3. THE LAST STAGE CONTROL AND THE CONNECTION
estimation algorithm and the control of multiple W TIT THE MM ESTIMATOR
model systems Is shown to exist. In section 4 we
obtain the controi algorithm. A new "full-tree" An Integral part of any control algorithm for

control algorithm Is derived which utilizes all this class of problems Is the system state
possible future parameter history sequences. in estimator. In this section we show that there
section 5 we use ;imulations to compare the MHP exists an Interesting -connection between the

control algorithm with the full-tree controller, control of multiple model stochastic systems and

the 1111 system state estimator (811. To this end

2. PROBLEM FORMULATION we start by solving for the time N-I optimal

The problem to be solved, Is discussed next. control. The optimal control at time N-1, is the

We took the pragmatic approach of starting with value of u(N-l1 which minimizes

the available mathematical and statistical tools
round to yield success In solving similar J(N-1) Ex(N-I)'Q(N-lx(N-")1u(N-1)'R(N-I)u(N-1)

problems or this type In the past (I.e., use Is
made of the ;tochastic dynamic programming method *x[N)'O(N]x(N)Ii'')
and the total probability theorem, etc.). As we
shall-see, not only does this practical r Ex(-'Q(X-t)xN-1).u(N-)'R(N-t)u(N-1)

engineering approach yield an Improved multiple " E
model control algorithm, but it also leads to the
Interesting theoretical observation of a direct +x(N)'Q[Nlx(N) INw=J
connection between the I11 state estimation
algorithm and jump-linear control.

It Is desired to rind a sequence of causal "P(I(N]=Jl"'] (3.13
control values to minimize the cost functional



A I~~i.IM1(3.2) Jlk~l) A ml Cxik)'0(klx(k)u(k)R(ku(k)

and use the state equation (2.2al and (2.4), X. Jk-. 1'') l1 1 4.3)
(2.5) In (3.1iJ~o~get

J(N-1) - (x(N-i)'[O(N-I).V,0O(N)FJxWN-l) where J(khlk Is the optimal cost-to-go from
J-1 time kc to the end. Now applying the total

*2u(N-1)pG(O(N)Fjx(N-lJ*u(N-1)'(R(N-IJ.Gi'0(N)GII probability theorem to (4.31 yields

u(N-1)I 1.iN.J )P (NIN-1) Jftklk) - min~ (E(x( k)'Q(k)xfk) *u(k)'R(k)u(k)

+Z tr(0(N)V1 Ii1(NIN-1) (33 Mkliz1k~.i)nIlh (4.1)

Now taking the partial of (3.3) w.r.t. u(N-l) and The control that miniimizes an approximation

setting It to zero yields to (H.4) Is derived In the Appendix, and Is given
as

u(N1)- -R(-l)~ ,O()Gi~ (NN- ~jU' T(k) - R(k) + Glk. P'(k-I) C. ii,INlk~l)j

t~1tul~IlNI (NF- E~x(Nl)11 M(N))ntiletiae so p

Noticethat notgan e hat the ntrl paayetes ixed

(model-history-cofditloned optimal cost matrices)

i(1))P1jM(N-0-I).Il1(N)-j.I"N (3.5) are computable off-line.

where, since t1(N).j In the first conditioning Is
Irrelevant, the expectation Inside the summation S. SIMULATION RESULTS

Is The FT controller developed In Sec. 4 Is used
to control the state trajectory of the system.

E~x(N-l)JIi_,M(N)-j) R *(N-IJN-Ihz1,(N-IN-I) The performance of this algorithm, as determined
Mi by (2.0), Is compared to the cost obtainable by

using the lIMP controller discussed In 1T3). In
~ x~(NliN1)(3.61 order to obtain a meaningful comparison we use

the rigorous statistical analysis technique

which Is the 1111 mixed Initial estimate 1811. presented In (115, W31.

Thus using (3.6) In (3.4) we get 1he control of a double Integrator system
with process and measurement noises Is considered

*N-1 -R(N.H- 4,Nit NI1)l with a gain failure. The two possible models are
u(N11- jRH-)I )(,1I given by the following system equation

J I

1. THlE CONTROL ALGORITIIM * Tn]vk l.(.1

We will derive a full-tree control algorithm with measurement equation

(FT) which computes control values by taking Into z(ic) a N 01 xI(k + w~k) (5.2)

account all possible future model histories. AsThmoesdfrIntectolgipamtr

will be seen by our example this method offers b'. The process and measurement noises are
Improved performance over the existing scheme mutually uncorrelated with zero mean and
JT31. variances given by

The I-th future history of models Is

denoted as Elv~k) v(j)) -0.16 6j(5.3)

h - (I1(k)-l ...... Ml4)-im) KI)r" an(4.11wll 6)154

where 11 Is the model at time 1 from The control gain parameters were chosen to be

history I and bt.2 and b2-0.5.

I S t S Ix,._N(4-2 beThe Hartkov transition matrix was selected to



R were0selected.as 5.5) the FT controller performs better than theL .•* controller for this problem. The estimated

For this example 1-7, and the cost parameters Improvement (decrease In cost) or 70X isR 0k) and Q(k), (see (2.1)). were selected as statistically significant.

R(k 5.0 kl,,...,N- (5.6)

and TABLE 1i

0(0) 8:8 8:8 STATISTICAL TEST FOR ALGORITHM COMPARISONS
0(i) T2 : test Estim2ted

Statistic Improvement
0 (2) i:8 :8 2 zo

o(1 :8 :5.7 FT-MMP 13,456 3,316 4.1 70
S :8 1:8

O() :8 8:8 6. CONCUSION

0(7) I %o 8 The development or a new control algorithm
S 10for discrete-time hybrid stochastic systems with

where the last matrix, O(7), reflects our desire Markovian jump parameters has been presented.
to drive x,(7) vigorously to zero. Also note This contoller was derived through the use of
that for this example T-1.0.

The real system was Initialized with stochastic dynamic programming and by taking into
x(O)-[30.0, 0.0)' and a random selection was done account all possible future "histories of
for choosing the Initial model with models". This scheme uses the IMM state
PIM(O)-i)-O.5, I-t,2. The Kalman filters each
received an initial state covarlance or estimation algorithm. We show that there is an

Interesting connection between the IMM state
P(OI0O0) - .[ . (5.8) estimator and control of jump-linear hybrid

1systems. This new controller Is of the OLOFand the initial state estimate was selected as class and has off-line computable control gain[ t z(O1 parameters.
(0I -- l Z j (5.9) From the example It is seen that this scheme

R2(0IO) Z can achieve a statistically significant reduction

where z(-t) - 30.0 * w(-I) and z(O) - 30.0 * In cost when compared to the multiple model
w(O). partitioning approach.

Statistical tests were made on the results of
50 Monte Carlo runs. Sample means and variances
of the Monte- Carlo costs C, defined In (2.1)
were computed for the FT, MMP, and "known APPENDIX
model-history" (i.e. optimum linear quadratic)
controllers.

Table I contains the results. The FT
algorithm shows a clear reduction In cost as I. Derivation or (4.51
compared with the MMP scheme. However In order
to provide a rigorous argument that the actual Note that given the future history of
performance Is ordered as Table I Indicates we models Mk*"' j , the optimal cost-to-go
apply the statistical test presented In (15, 131.

Table II contains the results. The sample f'(k.lI - ) is easily computed and is
standard deviation o or the mean of denoted.
the cost differences, CMMP-Cr,. are shown. ( *T) E'x(k.i'P(klx(kI) "."1Mkt I
The hypothesis that the FT 'controller is better J=(k.l)l£th.n the MMP scheme call be accepted only If the
probability of error o is less than, say, I 91(kil) (A.11

percent. Then the threshold against which we
compre he tst tatstic A/a iswhere the notation from 1134) is used for P~k.1)

com pare the test statistic Z,/o j isan d l .and =[k.I).
tln2.33. This test statistic has to exceed the Since the expectation In (4.4) Is conditioned
threshold In order to accept the hypothesis. k4L.1

on 1 *, we obtain our of approximation

by replacing J{k-.,i"') inside the

TABLE I expectation with (A.1), and (4.4) becomes

SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS rN-k.2

- ~ T .(k~l') = ml (E(x(ki'Q(klxfk) * u(k)'R(k)u(k)MoelIlr FT "P UP Is
Sample Mean 2,647 6,063 19.519 E(x(kI)'P P'(k.1 )x(kl)IM .IEJ}

Sample Standard 8,096 3.96ES 1.12E7aviati, o 3,E . , "C'(k"l'.l,,~~kINWI)" (A.2)



where (651 Y. Bar-Shalom and T.E. rortmann, 'Tracking
and Data Association,' Academic Press, Iggg.

~i(Nlk.1j I a i"411A.3) (Cii C.D. Chang and M. Athans, "State EstimationI for Discrete Systems with Switching
Now se 2.2) an aply he sootingParameters," WEE Transactions on
Now se 2.Zi an aply he sootingAerospace cnd Electronic Systems, Vol.

property at expectation to (A.2) t.0 get AES-14; No. 3, May 1978.
(C2i N.J. Chizeck, "Discrete-time Jump Linear

,N-k4 2  
Quadratic Controllers with Seml-MarkovJ*(k.i'i zmini (E(x(k)'O(k~x(k) + u(k)'R(k)u(k) Transitions," Proc. Asilomer Con!., pp.
61-65, 1984.

(C31 H.J. Chizeck, A.S. Wiisky, and 0. Castanon,
# F x(Ri.G ulk) # vkIIklf1P'ik-1it.) "Discrete-Time Markovian-Jump Linear

k.1 k-1Quadratic Optimal Control," Internatitonal

k+1A1Journal of control, Vol. 43, No. 1,+ C(k~im "',(Nk-11) (A.41 pp.213-231, 1986.

Wisky, "Discrete-Time Stochastic Control, afTake the partial w.r.t. ulki at (A.4) and set to Hybrid Systems," Proceedings of the 1980
zero to solve tar Joint Automatic Control Conference,

Paper TA3-C, San Francisco, 1980.
,N-k.ZICS! L.J. Campo. P. Mookerjee and Y. Bar-Shalom,

ul(k)--1 (k) . l.P(-I k11NkI "Failure Detection Via Recursive Estimation
1:1 tar a Class at Semi-Markov Systems,"

Proceedings of the 27tA IEEE Conference
rN~k*2on Decision and Control, Austin, Texas,X C .Plik#1)F k 1 E~x(kiIMk1".",l~1 Nlk1II (A.S) FA-il, 1981 8.
hi (Ell i. Ezzine and A.H. Haddad, 'Error Bounds In

the Averaging at, Hybrid Systems,'
We still need to evaluate the expectation In Proceedings of the 27th IEEE Conference on

(A.S). This is done as tollows. Note that Decision and Control. Austin Texas,
x(k) Is Independent at H(Ii). -k+2,..N It Dec. 1988.
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Initial estimate (see (3.6)). thus using (A.6) In International Journal of Control. Vol

42, No. 1, pp. 791-819, 1985.(A.S). we get (4.S). (G31 1. Gertner and 0. Rappaport. Information
Science 13, pp. 269, 1977.

REFERENCES (HI! R.A. Howard, "System Analysis at Semi"Markcv
(AllK.J.Astom. oural o Mah. Aal.Processes," IEEE Transactions on
(AllK.J.Astom, oural o Mah. Aal.Military Electronics. Vol MIL-8, pp.

Applic. 10, pp. 174, 1965. 14-,4 pi 94
(A21M. thas, "he tocastc Cotro ofthe(1121 0. HiJab, "The Adaptive LOG Problem - PartF-8C Aircratt Using a Multiple Model Adaptive 1,"IEEE Transactions on Automatic

Control (MMAC) Method - Part 1: Equilibrium Control. Vol. 28, pp. 171. Feb. 1983.
Flight,' IEEE Transactions on Automatic 11L1i 0.6. Lainiotls, "Partitioning: A Unitying
Control, Volume AC'-22. pp. 768, 1977. Framework tar Adaptive Systems If: Control,"

IA31 H. Akashi, J. Kumamoto. and K. Nose,PrceigofteIE 64p."Applications at Monte Carla Method to 11roceedinAg ofth97E66. p
Optial ontol or inea Sytem Uner MllR.L. Moose and P.P. Wang, "An Adaptive

Measurement Noise with Markov Dependent Estimator with Learning tar a Plant
Statistical Property," International Containing Semi-Markov Switching Parameters,"
Journal of Control 22, pp. 821-836, 197S. IEEE Transactions on Systems. Man and

(611 H.A.P. Biam and Y. Bar-Shalom, "The Cybernetics (Correspondence), Volume
Interacting Multiple Model algorithm tar SMC-3, pp. 277-281, May 1973.
Systems with-Markovian Switching IH21 R.L. Moose, "An Adaptive State Estimation
Coefticients-, IEEE Transactions on Solution to the Maneuvering Target Problem,"
Automatic -Control. Volume AC-33, pp. IEEE Transactions on Automatic Control,
780-783. Aug 1988. pp. 359-362, June 1975.

(621 J.D. Birdwell, B.A. Castanon, and M. Athans, (M31 R.L. moose, H.F. VanLandingham. and P.E.
"On reliable Control System 'Designs with and Zwicke, "Digital Set Point Control at
without Feedback Recont Igurat Ions,' Nonlinear Stochastic Systems." IEEE
Proceedings of the 17th IEEE conference Transactions on Industrial Electronics and
on Decision and Control, San Diego, Control Instrumentation. IECI-25. pp.
Calif., pp. 709-715, Jan. 1979. 39-4S. Feb. 1978.

(83i W.P. Blair and 0.0. Sworder, "Feedback (M41 V.J. Mathews, J.K. Tugnait, "Detection and
Control at a Class at Linear Discrete Systems Estimation with Fixed Lag tar Abruptly
with Jump Parameters and Quadratic Cast Changing Systems," IEEE Transactions on
Criteria," International fournal of Aerospace and Electronic Systems. Vol
Control 21, pp. 833, 1975. AES-19, Na. 5, Sep. 1983.

1Bl1 Y. Bar-Shalom and E. Tse, "Dual Ettect. [HSI M. Marlton "On Systems with Non-Markovian
Certainty -Equivalence, and Separation In Regime Changes" IEEE Transactions on
Stochastic Control," IEEE Transactions on Automatic C' trot. Vol. 34, No. 3 Mar
Automatic Control, Vol. AC-19, No. 5, 1989.
Oct. 1974.



M161 M. Mariton "Jump Linear Quadratic Control
with Random State Discontinuities,"
Automatica, -Vol. 23, No. 2, pp.
237-240, 1987.

[17) M. Marlton "On the Influence of Noise on
Jump Linear Systems," IEEE Transactions on
Automatic Control, Vol. AC-32, No. 12,
pp. 1091-1097, Dec. 1987.

(1181 M. Marlton "On Systems with Non-Markovlan
Regime Changes," IEEE Transactions on
omatic Control, Vol. 34. No 3. pp.
16-349, Mar. 1989.

11 R. Rlshel, "The Minimum Principle,
Separation Principle. and Dynamic Programming
for Partially Observed Jump Processes,"
IEEE Transactions on Automatic Control.
Vol. 23, pp. 1009, Dec. 1978.

[R21 R. Rishel, "A Comment on a Dual Control
Problem," IEEE Transactions on Automatic
Control, Vol. 26, pp. 606. Apr. 1981.

ISIO D.0. Sworder "Control of Systems Subject to
Sudden Change In Character." Proc.
IEEE, 64. pp. 1219-1225. Aug. 1976.

1S21 O.0. Sworder, "feedforwat d/Feedback Controls
In a Noisy Environment." IEEE Transactions
on Systems, Man, and Cybernetics, Vol.
SMC-16, No. 4, pp. 522-531, Jul/Aug 1986.

[TI) J.K. Tugnalt, "State Estimation for Discrete
Systems with Switching Parameters," IEEE
Transactions on Aerospace and Electronic
Systems, Volume AES-15. pp. 464, 1979.

[TZJ J.K. Tugnalt, "Detection and Estimation for
Abruptly Changing Systems," Autimatica.
Volume 18, No. 5, pp. 607-615. 1982.

,T31 J.K. Tugnalt, "Control or Stochastic Systems
with Harkov interrupted Observations,"
IEEE Transactions on Aerospace and
Electronic Systems, Volume AES-19, No.
2, pp. 232-238, Mar 1983.

iVI) H.F. VanLandingham, and R.L. Moose. "Digital
Control or High Performance Aircraft using
Adaptive Estimation Techniques" IEEE
Transactions on Aerospace and Electronic
Systems, AES-13 pp. 112-120 Mar 1977.

[V21 H.F. VanLandingham, and R.L. Moose, and W.H.
Lucas, "Modeling and Control of Nonlinear
Plants," Proceedings of the 17th IEEE
conference on Decision and Control. San
Diego, Calif. pp. 337-341, Jan. 1979.

(WI] C.C. White, "Finite-State, Discrete-Time
Optimization with Randomly Varying
Observation Quality," Automatica 12,
pp. 525, Sep. 1976.

[W21 W.M. Wonham, "Random Differential Equations
in Control Theory," In-A.T. Oharucha-Reld
(Ed.) Probabilistic Methods In Applied
Mthematics, Vol. 2. 1970.

[W31 C.J. Wenk and Y. Bar-Shalom. "A Multiple
Model Adaptive Dual Control Algorithm for

Stochastic Systems with Unknown Parameters,"
IEEE Transactions on Automatic Control,
Vol. AC-25, No. 4, Aug. 1980.

[YI E. Yaz, "Stabilizing Control of Discrete
Systems with Jump Markov Parameters,",
Proceedings of the 27th IEEE Conference on
Decision and Control, Austin Texas.
Dec. 1988.



FROM PIECEWISE DETERMINISTIC TO PIECEWISE DIFFUSION MARKOV PROCESSES

Henk A.P. Blom

University of Connecticut, ESE Dept.

ABSTRACT

Piecewise Deterministic (PD) Markov processes form a as they provide pathwise represeitations with a
remarkable class of hybrid state processes because, strong Markov characterization of all major non-
in contrast to most other hybrid state processes, diffusion Markov processes. As such, PD Markov
they include a jump reflecting boundary and exclude processes provide a framework to study Markov
diffusion. As such, they cover a wide variety of decision drift processes (Hordijk and Van der Duyn
impulsively or singularly controlled non-diffusion Schouten, 1983; Yushkevich, 1983) along the same
processes. Because PD processes are defined in a line as diffusions (Vermes, 1985). With this, an
pathwise way, they provide a framework to study the interesting generalization is to extend the spectrum
control of non-diffusion processes along the same of hybrid state Markov processes by including
lines as that of diffusions. An important diffusion into PD Markov processes. As the present
generalization is to include diffusion in PD definition of PD processes does not seem to have an
processes, but, as pointed out by Davis, combining opening left for that inclusion (Davis, 1984), we
diffusion with a jump reflecting boundary seems not need a different approach.
possible within the present definition of PD --"
processes. This paper presents PD processes as -- - - -
pathwise unique solutions of an It8 stochastic --
differential equation (SDE), driven by a Poisson Piecewise
random measure. Since such an SDE permits the / Diffusion
inclusion of diffusion, this approach leads to a Markev
large variety of piecewise diffusion Markov / Counting Processes Diffusions
processes, represented by pathwise unique SDE Processes
solutions. Markovian

I DiffusionSwthn
1. INTRODtcI~Q Itni iUwie cefcet

Because many of the stochastic processes that we Harkov
meet in nature have a state space that is a product Processes
of a continuous space and a discrete set, we often
need pathwise models on such a hybrid state space.
As a result, several classes of hybrid state space
models have been developed, such as systems with Fig. 1. Main classes of hybrid state Markov
Markovian switching coefficients, doubly stochastic processes.
counting processes and Markov decision drift
processes. These models are used in quite different The approach that overcomes this difficulty,
fields of applications, by which their studies have presented in the sequel, is to assume a stochastic
often evolved separately, one reason to study hybrid differential equation (SDE) in a hybrid space and to
state space processes within a common framework is construct a large class of piecewise diffusion
that their martingale parts are in general Markov processes from it. With.respect to the state
discontinuous. This property has attracted a lot of space we reatrict our attention to a hybrid subset
attention, and is by now very well documented of a Euclidean space. Then the most general SDE is
(Jacod, 1979; Cinlar et al., 1980: Bremaud, 1981; of It6 type, driven by Brownian motion, w, and a
Elliott, 1982; Bensoussan and Lions, 1984; Ethier Poisson random-measure, p on (0,w)xU,
and Kurtz, 1986; Jacod and Shiryaev, 1987). It is dt - 5(tt)dt + 0(tt)dwt + 6 0(tt-,u) p(dt,du).
quite clear from these results that, to study hybrid The math of a solution of this SDE is right
state Marko processes along the same lines as conthof a s fthis limis rt
diffusions, we need both pathwise representations continuous and has left hand limits: t -
and strong Markov (martingale) characterizations of If p generates a multivariate point (t,ut), then the
those processes. Unfortunately, Zor hybrid state path of t has a discontinuity:
Markov processes there is presently a lacuna of tt " tt- + f(t-,uV)
pathwise represantations with strong Markov In the sequel we shall focus on pathwise unique
characterizations. This lacuna is apparent if we solutions. The classical result for the existence of
depict the main classes of hybrid state Marko such solutions requires that 0 is sufficiently
processes in the form of a Venn-diagram (fig. 1). continuous (Gihman and Skorohod, 1972), which

en wrestricts the SDE essentially to systems with
There exist pathwise representations with strong Markovian switching coefficients. However, there are
Marko characterizations of counting processes with some non-classical pathwise uniqueness results that
diffusion intensity (Snyder, 1975; Marcus, 1978), of allow a discontinuous * (Lepeltier and Marchal,
diffusions with Markovian switching coefficients 1976; Jacod and Protter, 1982; Veretennikov, 1988).
(Wonham, 1970; Brockett and Blankenship, 1977) and Taking these results as a starting point,, we
of Piecewide Deterministic (PD) Marko processes introduce and evaluate a particular structure for W
(Davis, 1984). For many other Markov processes in in section 2. This 4tructure poses hardly any
figure -1, there exist only strong Markov restrictions on the possible solution of the SDE,
characterizations (Kingman, 1975;Anulova, 1979, while it enables a separate evaluation of an
1982; Bensoussan and Lions, 1984; Belbas and unbounded jump intensity and a hybrid state space
Lenhart, 1986). Actually, PD Markov processes seem situation. In view of this separation, we first
the most interesting of all processes in figure 1, consider, in sections 3 and 4 the modelling of a

jump reflecting boundary in R" through -an unbounded
Research supported by AFOSR Grant 84-00112, while jump intensity, and after that, in section 5, we
the author visited the University of Connecticut, consider the hybrid state situation.
on leave from National Aerospace Laboratory NLR, Assume an open subset 0 of Rn with- jump reflecting
PO Box 90502, 1006 BM Amsterdam, The Netherlands. boundary 0, which means that (Et) undergoes an



inscantaneous jump into the Gi-tef- -'f if ( t) 2 THE SDE OF LEPELTER AND MARCHAL
tries to cross or to travel through a0. To model
this with the above SDE, the Poisson random measure We assume a stochastic basis (a,$,F,P), endowed with
p should instantaneously generate a point when (tt) an m-dimensional standard Wiener process, tw), and
enters 80. However, this is not possible as a a Poisson random measure, p(dt,du) on R+xR +  (Jacod
Poisson random measure generates almost surely no and Shiryaev, 1987, p. 70), with intensity measure
point at an entrance time. To overcome this problem, dtxm(du), and consider the following stochastic
we briefly discuss the following three approaches: differential equation (SDE) in R+xR ,
1. Replace p by a random measure, with almost dtt - M(tt)dt + 0(tt)dwt + R.1Rd O(tt_,u) q(dt,du) +

surely one point at an arbitrary time.
2. Assume a 0 such that p generates an~active point + R+!Rd*(xt_,u) p(dt,du) , (1)

during an infinitesimal small tim interval where q is the martingale measure of p, to is an
after entering a0. 0-measurable random variable, while a, 0 and P are

3. Assume a 0 such that p generates an active point measurable mappings of appropriate dimensions.
during an ihfinitasimal small time interval just
before entering 80. The classical reference for equation (1) is Gihman

Approach 1 adequately solves the instantaneous jump and-Skorohod (1972). Significant extensions of their
problem but creates many new problems, because if p results have been obtained by Lepeltier and Marchal
is not a Poisson random measure, then the SDE can (1976) in their study of the relation between an
not be analysed within the powerful It6 framework. integro-differential operator and an SDE of type
Approach 2 is the well known approach of randomized (1). Their particular SDE can easily be obtained
stopping (Bensoussan and Lions, 1984). As this fromd(1), by introducing homeomorphism aappings of
approach allows (tt) to cross or to travel through R-XRd into (uSRUl; 0<JuI l) and of R+xRQ into
80, the resulting process is at best a modification (ueRd+ l<JuJ<w), and subsequently transforming m
of a PD Marko process. Approach 3 is the desired and 0 correspondingly. consequently, the results of
solution. However, the problem with approach 3 is Lepeltier and Marchal can immediately be used in the
that it is in general not known how to carry it out. present study of (1), while allowing the inatensity
A constructive answer to this will be given in the of the active points in R+ to be unbounded outside
sequel. It is clear that approach 3 needs a kind of some known Borel set O,CRn .
prediction of the time that (tt) might, otherwise,
enter 80. Actually, PD Markov processes are
presently the only processes for which this
prediction problem is solved (Davis, 1984). As such, A. There is a constant K such that, for all tEen,
we first formulate that solution in an SDE set up in Ia()I2 + |0(t)12 +R_ d I0(t,u)V m(du) K(l+ltIl).
section 3. Next, in section 4, we present a solution x
of the prediction problem for the situation with For all kEN there exists a constant Lk such
diffusion. that, for alX t and y in thT ball Bk=(uERn&IuI 2-k),

Finally, in section 5, we explicitly consider the Ja(t)-a(y)[ + 1 ()-B(y)I +
hybrid state space situation. The most interesting + R',Rd Mt(1,u)-(yu) 2m(du) Lk Y2
effect of the hybrid state space assumption is that
it leads to a particular type of jumps: jumps in the A!_,2 0 is a known Borel subset of Rn,
continuous state component of (Ef) that anticipate a R+1Rd X( W(t,u)x0 )m(du) is uniformly bounded on 0',
simultaneous transition of the discrete component of n] ,

(ct). This type of jumps have been introduced by and [t+0(tu)] 6 0', for all EGO, ueRd+1.
Gnedenko and Kovalenko (1968) for piecewise linear
processes and by Sworder (1972) for systems with ALA For all kEN there exists a constant Mk, such
Markovian switching coefficients. For short we refer that, with Bk the ball of k:
to these anticipating simultaneous jumps as hYJrid A. for al tBkNo',
JIM-2n. The SDE framework of this paper provides an R+xRd I*(1,u) m(du) Mk.elegant way of representing the hybrid Jumng of PD k. for all tEBkn(Rn-0'),
Harkov processes and their piecewise diffusion
generalizations. 4d J*(t,u) m(du) ! Hk,
Some other iggeneralizations of PD Markov given that, for all ueR+XRd,

rinteresting gr(,u) - 7(tu+Col(1,0,..,0)).
processes, not considered in the sequel, are the
in'clusion of continously reflecting or sticky &L.5 For all r6N there is a constant N,, such that
boundaries. The inclusion of a continuously
reflecting boundary, while preserving pathwise E( 1 d X( .( s_,U)d0 ) p(ds,du))
uniqueness, seems possible if that boundary is 

6 R X

smooth enough (Chaleyat-Maurel et al., 1980; Menaldi
and Robin, 1985; Frankowska, 1985; Saisho, 1987). 2.1 roposition
The inclusion of a sticky-boundary without loosing Given m(du)-dulxA(dU) and assumptions A.2, A
pathwise uniqueness seems difficult if not A.2, ALA, 6&LL& are satisfied. Then ecftation (1)
impossible, but strong Harkov characterizations are has for any C060

, a pathwise unique solution, (tt).
possible (Kingman, 1975; Anulova, 1979, 1982). Moreover ({t) is then a right continuous Markov

process.
+ (0Remark: Proposition 2.1 is a version of Theorem 1114R+ - (0,c) and R (-0,0), of Lepeltier and Marchal (1976), in the sense that

R+ - R++(0) and R_ R-+(O). they considered the situation of 0'- Rn.
Z - (..,-2,-1,0,l,2,..), Nevertheless, for the proof we can almost follow
N - (1,2,3,..). Lepeltier and Marchal. Another recent extension of
i - CoI(t2, n} if t - Col(tl,..,tn) Theorem III4 oZ Lepeltier and Marchal is to the

situation of a non-Lipschitzian a in turn of a
10j 2 . "i j2 , if v is a matrix sutficient non-degeneracy assumption on 8
1,12  02 , if a is a vector (Veretennikov, 1988).
ti1 P i i oisa ec o

t  i-th component of process t". If (1)'s fourth right hand term vanishes, then it is
a0 boundary of the closure-of set o. well known that . and . are sufficient
Int(x) : integer part of X. conditions (Gihman and Skorohod, 1972). As such, we
X X(True)-i and X(False)-0. have to show that (l)'s fourth right hand term does
C DLAG right continuous with left hand limits not change that sitat"ion, under aL, AL.A and
C (0) : the set of all real-valued functions that ALLA.

are k. times contihuously differenUlable on Due to A!.a and the definition of ItO integration a
0. The superscript 4'deleted if k-o. It ksolution of (1) is CADLAG. Due to "L., the
is followed by b, then f and its first k discontinuiti in (tt), that are caused by (1)'s
derivatives are bounded on 0. fourth right hand term, are countable. Therefore we

5(4) domain of operator 4 can associate with each discontinuity a time, Ti,



anTa-lt -variate point, u-, suh-Ithat Having theorem 2.2, we are prepared to consider aTj jump reflecting boundary (in sections 3 and 4) andOT 1<T2<..<T<.. and jim Tj i. Due to the latter the hybrid state space situation (in section 5). But
and (tt) being CADLAG, first we give a strong Markov charar.terization of

(tt) if there is no reflecting boundary.
R+1Rd P(ts_,u)pfdtdu) - 0<9t 0(tTi- 'U Ti) "  2.3 Proposition

If (l)'e first three right hand erms vanish, then Given F vanishes everywhere and the assumptions of
the latter sum is finite (a.s.) for all tER+, due to theorem 2.2 are satisfied. Then for all tnERn, (t}
&L.4 and b'.. With this result it is sufficient to is a semi-martingale strong Markov process, and its
show that (1) has A pathwise unique solutionon an extended generator, A, is given by:
arbitrary finite time-interval (0,T]. For the Af - tf + f + V f , for all fEC2 ,b(Rn), (3)
existence of a solution, see the proof of Th. 1114 where
of Lopeltier and Marchal (1976; pp. 82-85). We tf(t) i(t)f(+ R. (6(t)0(t)Tijf" ( )
already know that a solution is unique 'and ti i' I Ej(0
gt-measurable on [0,T,). Because It is CADLAG and *J (4)
is reasurable, T1 is T -measurable. Then, by the Y'f(t) -if (t)] S-(t,dC),
definition of a Poisson random measure (Jacod and Rn(OMili i (5)
Shiryaev, 1987, pp. 65-66) u T is 5T -measurable Y fm RnL(O)ff(E+Of(t)] S+(tdC), (6)

- E + '(t ,u ) is 9 -measurable and, due to and for all Borel ACRn-(O),T1  T1 - TI- T1  T

A'?3, t--GO - Pathwise uniqueness holds true on S(t,A) aR/Rd X[ *(t,u)EA ] m(du) , (7)

[O,TI] and t 6.0 Due to the latter, we can repeat S+(EA) B 0J') Ad X( *(t,u)GA ] duI g(df). (8)
the procedure to show that pnthwise uniqueness holds
true on [TlT 2] and tT 60, and so on for the Proof:

countable sequence of intervals. Q.E.D. Due to .I, &A, A".5 and O,-Rn, the St-predictable
part of Et is

The interesting aspect of proposition 2.1 is, that + (mdds
the coefficients of (1)'s fourth right hand term may At .6(Es)ds +  A-d 0(ts,u) (du)d,.
be discontinuous in E. This is exactly what we need, Obviously, (At) is of finite variation on any finite
to construct a class of hybrid state Har:ov time-interval, while (Et-At) is a local martingale
processes that is larger then the class of solutions ( t) is a (special) semimartingale (Jacod and
of systems with Markovian switching coefficients. Shiryaev, p.43, Def. 4.21). This immediately implies
The first step towards this construction is that (Et) is a strong Markov process. Because (Et)
replacing *(E,u) by is a semimartingale, the generator A follows from

*'(t,u) - W(t,u) X( (ul<A(t)] U [F)xO] ), (2.a) It8t's differentiation rule for discontinuous
where F is a measurable mapping of Rn into (0,1), 0 semimartingales (Elliott, 1982). Q.E.D.
and A are measurable mappings of appropriate
dimensions, while the range of A is'R .. With this
(1) becomes Z, PIECEWIS RMILJISTIC MARKOV PROCESSES
d~t = a(Et)dt + 8(Et)dwt + RRd W(Et_,u) q(dt,du) + In this section, we represent PD Markov processes as

+ R+f d #'(tt,u) p(dt,du). (2.b) solutions of an SDE. Therefore, We consider (2.a,b)
with 0-0 and W vanishing on R-xR";

dEt - a(tt)dt *+~fd W(tt_,u).Assumptions dx (td R+R (t')

.X( [uI<A(t) ] U [F(t) 0] ) p(dt,du), (9)
A.3 Define 0' E (teRn; F(E)-O), Our goal is to introduce a particular mapping

C[+(tu)] E 0', for all ERn, ueRd+l. F:Rn-(O,l), such that (9) has pathwise unique
sclutions which are PD Markov processes. The present

A". Given, for all teRn-0 ' and uR+xRd , definition of a PD Harkov process (Davis, 1984)
A(P)-I, works without such a mapping F. Instead, there is
(E',u)--(tu+Col(l,0,..,O)), given an open subset 0 of Rn, with a jump reflecting

and for any kEN there exists a constant Hk, boundary 0, such that Et) instantaneously jumps
such that into the interior of Just before it would,

AE)d otherwise, cross or travel through 0O. For the
Il(,u) lm(du) 9 Mk, for all ZEBk. definition of a PD Marko process from (9) an

appropriate F. has to be constructed from 0 and a.
The-construction of F will be based on the following

A. A(t) is on 0, uniformly bounded and continuous differential equation, on (O,w)xRn,
in wh dtt a(tt)dt, tG(O,8), (10)

(t), teR. which has pathwise unique solutions, assuming that am +,exits 0 at most a countable satisfies conditions a and A.2. From this, wenumber of times. define LQ as the set containing all elements of 0

that are directly accessible by (E't) from 0:2.2 !!Theoraem~c)an 'eOschta
Given m(du)-dulxg(d2) and assumptions "., &.U, &A, t (0 ; 5 r(0,€) and ,0GO such that
&A, " are satisfied. Then-equation (2.a,b) has E,1 =E A E'1 _.0). (11)
for any t GO, a pathwise unique solution (tece
Moreover ? )t is then a Markov process, of which the Next we introduce the following distance function,

sapl pth ae eaurbe n hestchstc ass d (t,k) s. inf (r>0 ;l- A'" ^ VrE}, (12)
sample paths are measurable on the stochastic basis which is, under the above mentioned conditions on a,
(a,9,F,P). a measurable mapping of Rn into R. With this we

define, for ieN,
Proof:04 --(EGO ; da(tiL) > 1/i), (13)
Because, on 0', A(E) is continuous in E (due to which are then Borel sets, and which form the Borel
A".5.a) and (Ul<A,),A'GR, defines a measurable set
mapping of R into (0,I} X(uI<A()) defines a O'S (14)
measurable mapping-of Rx0, into (0,1). Because the AN 0'"

range of F Is (0,I), we can write Now we define our particular F as follows:
X( .ul<A(E)] U (F(E)*O] ) - X( u1<(t) ) V F(t), F(t) -I , if ERn-o,,

of which both right hand terms are measurable. This - 0 , else. (15)
implies that the supremum is measurable, which Due to the above construction, F is measurable, by
combined with the measurability of *, makes that *, which theorem 2.2 yields:
is measurable. This ensures that (2.b) is a special
case of (1), with * replaced by *, according to 3.1 Corollary
(2.a). With this we are left to verify that &.1, Given an open subset 0 of Rn , and a mapping F,
A!.I and b! guarantee that &L, A and A.L are defined by (10) through (15). Then, under the
satisfied, which is straightforward. Q.E.D. assumptions of theorem 2.2, equation (9) has for any



,o O jpathwise unIque solution (t). Moreover, f(t) "f(t) + tf(s) ds + d(local martingale) +(Wt is then a Marker process, of which the sample A._paths are measurable on thestochastic basis + [ (S-J f(ts+V(ts,u)) - f(ts)) dsXdUlxg(dU).

Substitution of 7+ yields

Next, we come to the main result of this section, f() + Af(ts) ds + d(local martingale),which implies that (tt) is a Piecewise Deterministic dt - MO) + I
Marko process r which implies that (t) is a strong Markd u process

with extended generator (, t(A). Q.E.D.

With probability ono, the process (t ha, of corollary w. PiECEWSE DIFFUSION ARKOV PROCESoES

reets 0 _ by ro wthsot exto(0, ont Iital easueta).~8~~ispst

caueise any diffi times n al oher cstHaving obtained PD Markeb processes as solutions of
pr : an SDE, the next stp is to include diffusion.
By the definition of F, all points of p in R

+ becom w Therefore we consider the following SDE:
active asinf as {it) has exit 00. This situation dtt - M( t)dt + 0(tt)dwt + t+d  (t(,u).holds on until (tt) reenters 0,. The reentering may
occur due to drjft or due to a jump generated by~a X( [U<A(t)3 U [F(t)9O] ) p(dt,du), (16

point of p in R . obviously, the cases that (t} which corresponds to (IIa,b) if anishes on R-x .

reenters nu by drift without exit of eUi do not Initially we assume that ( )i()h is positive
cause any difficulties. In all other cases, the definite for all Rn , but relax this assumption

probabilit o p aity oo exit OUL2 on drift is further on.
Now we construct F, starting from the following

Sexp(-s/r) ds - r exp(-f/r), differential equation, on (O,)xRn,
dt t - a(,)dt + (nf t)dwt, t(0,-), (17)with x-inf(I/i .ieN) and 1/v the intensity of which has paghwise uni ue solutions under

points of p in . Because t) exit , s a whh oiosla i a nd which defines a family
countable number of times, the probability of exit of homogeneous Marker processes with a measurable
0Uk at least once is then / exp-/r). if all transition function
points of p in R are active, then because wEN, O'jA sal (1)

11O w /h exp-/ ) - O, Because 0 is pobw tive efinite, any element of
wnich means a zero probability to exit 0UL~Q on is accessible by (tt from 0. Therefore we

(0,=). Q.E.D. initially use the following Euclidean distancefunction,
33 hgrmd,7(t,aO) 9 inf (It-yj ; y630), (19,)

The process ( t}, of corollary 3.1, is a which, obviously, isa measurable mapping.
semimartingale strong Marker process, and its Next, we define the BAtel sets 01 as follows,
extended generator, A, is given by: 01 -m(E 0u;udu(xdG) a 0 /i), iEN, (20)

f l lf +d +f , for all fde(f), and ro thi he Bel set
wh nd -are given in proposition 2.3 with T , une tihi
-0, while the oain of A is: As before, we define our particular F as follows:
v(=) - (f e S)ocom0u ; A+f(I)-O, all EC ). F(e) - 1 if t6n-0a,

s 0 else. o22)
bvousl obviously, F is measurable, by which theorem 2.2
Defint e process At as follows: yields:

.Md~s+ l d*(S )dux~nGiven an open subset 0 of O
n, and a mapping F,

.m~ d ~ d s + i l d #( i _, )  d ~ X ( ) , d e fined by (17 ) , (18 ) , (19 ) , (20 ) , (21 ) and (22 ) .

with Si the It-adapted times that (tt} jumps from Then, under the assumptions of theorem 2.2, equationRn-0 ' into 01, i .l and Sn 0 (16) has for any IOUO, a pathwise unique solution
Si " (s > Si-, ; ?s._&n-0, A Es60" ). {tt)" Moreover, ( t} is then a Marker process, with

s sample paths being measurable on the stochastic
Obviously, (At) is of finite variation on any finite basis (9,5,F,P).
time-interval, while (tt-At} is a local
gt-martingale. Subsequently, (It) is a Next, we come to the characterization of the
semimartingale. Application of t6's differentiation boundary behaviour and the strong Marko property of
rule for discontinuous (piecewise deterministic) (t}"
semimartingales to f( t), with f e C', yields:

f(tt) - f(+-) idtsji + 4.2 Theorem
(.1 atWith probability one, process (tt), of corollary

+ E R+ Rd (f( s+( s'u)) - fi - + 4.1, exits oU30 zero times on (0,w).

at1 f( s) ((s,ui] p((s),du), By the definition of F, all points of p become
up to indistinguishaility. active as soon as (tt) has exit O',say at moment T,
Substitution of A".4, which situation continues until ({t) has reentered

p(ds,du) - q(ds,du) + dsxm(du), 0', say at moment T+A. The exit may occur due to
d s - dA + d(local martingale), diffusion or due to a jump generated by a poinc of p
m(du) mu gkd ), in R+ . Obviously, the cases that (tt) exits O.-O, Ity

and using f E ,D(O) f Cb(OUkQ), yields diffusion without entering a0 do not cause any
a -f a ts to t) d difficulties. In all other cases we know from the

f(t) f(Eo)+i 1 6 -t(Es l[ (Esl]ids + X(ts_..O') proof of theorem 3.3 that A has an exponential
distribution of which both the mean and the standard

A(6s -  d (f(ES+*(Es,U)) - f(ts)] dsxdulxu(du) + deviation equals r-O+. With this, it follows that,
for any EO', the probability of entering and

" ill J d MIS +*(E5,u)) - f(E 5)] dulxu(du) + exiting within l/t is-i- 'r- P (-rR"-0-80) g .-i p '(,,(yeRn ; It'yj > K )
" d(local martingale), with z-Inf(l/i ; i6N).
up to indistinguishability. Because (tt) is a diffusion and K>0, the right hand
Next we use the property that side is of order r (Gihman and Skorohod, 1972, p.

7+f(t) - 0, all EELQ. 64). As this situation may occur a countable number
Because a is of linear growth and (tt) is locally of times, we have to divide by K, yielding order
bounded, (S(tt)) is locally bounded. This implies (i/x), -of which the limit, to, is zero. Q.E.D.
that (Et) does not increase while travelling through
0-0, to kg, as this takes a time interval of zero 4.3 Pro2 steo
durgtion. The latter and the assumptions that Given the assumptions of theorem 4.2 are satisfied.
fECO(0UUQ) and Y4f(t)-O for all tJQ, imply that Then for all C00', (Et) is a semimartingale strong
74f(ts)-O for all tsE0-O ,. With this, Mtrkov process, and its extended generator, A, is



. f ~ , or ll ED(),+ lt+d *(tt..,u) dyt(du) .(2 3.b)' Af -Zf +_Y+f , for all fEDa)
where i and are given in proposition 2.3, while The main objective of this section is to show thatthere Zandnin o a the last term of (23.b) generates a particular tyrsthe domain of cl S is: 0a) ~~)-,alta0. o jm:ajm n(Lt ae a
NAb+ of Jump: a Jump in (t) that anticipates asimultaneous switching of ( tl. For short we refer

E :csimilar to the proof of proposition 3.3, to this type of jumps as hbrjid.jumna. Notice that
except that now prof( o)-o, for all o0s , follows these b ij3 Jg are in some sense unexpected, hs
from feC(OUao). Q.E.D. all coefficients of (23.ab) are non-antLcipating.

To show these hybrid J umt explicitly, we need some
Finally, we consider the more general situation with preparation.
O(C)p(t)T being positive semidefinite. The
construction of F works according to equations (17), Under assM
(18), (20), (21) and (22), but with distance Under assumptions A.I, As for and ' , the
function: pair of equations (23.ab} has for any t0, a
f u(ton Q n E ) , (19) pathwise unique solution (tt,}t), where Yt is a

where L is the subset of aO tht is accessible by multivariate counting process on R+XRxRd of a(whe) from 0, () is the empty set-and E is the predictable intensity, AtEA(). ). Moreover both

closure of an n-dimensional ellipsoid, wilh centRe (tt,t) and ({t) are then sem martingale strong
t+a(t)r and shape defined by covariance 8(E)S(t) r. Markov processes, of which (tt) is indistinguistable
Obviously, do(.,JQ) is measurable, by which the 0i's from the one in theorem 2.2.
and 0 are Borel sets and F is measurable, and weget: Proof:

It follows from theorem 2.2, that the system of

4.4 Corollarv equations (2.a,b) and (23.a) has, for any Borel U, a
Given an open subset 0 of Rn, and a mapping F, pathwise unique solution (tt, Yt(U)). With this,
defined by (17) through (22). Then, under the system (2.a,b), (23.a) has a pathwise unique
assumptions of theorem 2.2, equation (IV) has for solution (Et,vt. Obviously all otentially active
any t0e0 , a pathwise unique solution (tt)" Moreover, points of p, that are in R+XR"XRR, are collected by
(t) is then a Markov process, with sample paths Yt in a predictable way, by which we can write
being measurable on the stochastic basis (a, ,F,P). R+ILd *( t,u) X( [Ul<A(tt_)] U [F( t)O] ).

Next, we come to the main result of this section. .p(dt,du) - R+1Rd 0(t,u) dvt(du)
up to indistinguishability. This implies that the

4.5 Theorem solution of (2.b) is indistinguishable from the
With probability one, the process (tt), of corollary solution of (23.b). Q.E.D.
4.4, exits oUk0 zero times on (0,w).

Now we are prepared to consider the hybrid state
RE ecmespace situation. Therefore we assume that the first

By the definition of F, all points of in R+ become component of tt is M-valued, with MCNB(l,2,..), and
active as soon as (tt) has exit 0'. This situation that we can write the first scalar equation of
holds on until (Et) reenters 0'. The reentering may (23 .) as follows:
occur due to drift and/or diffusion or due to a jump d;t - *+d *l(t-,u) dvt(du), (23.c)
generated by a point of p in R+. Obviously, the RxR
cases that (t} reenters 0, by drift and/or with P, a mapping of RnXR+xRd into the integer
diffusion without exit of OULQ do not cause any lattice, Z.
difficulties. Of those cases where LQ is accessible Next we assume that * satisfies, for all u1e(O,A(t)],
through drift only, we follow the proof of theorem
3.1. say Q is the subset of #S that can only be *(Eu)-r X EI 0(i 'E) ! ul < i o0('t'W)
entered by (t't) due to drift. For all other cases 'EM i.I
we then notice that a strictly positive type (19) (24)
distance d, at the moment of exit 0', corresponds where.9 is a measurable mapping of MxRnxad into
with a str ctly positive Euclidean distance from ZxRne1, and X is a measurable mapping of NxRn into
LQ-L,, due to the local boundedness of la(tt) and R+, such that a(i,.)- b for all ing-M, and
I(tt)| . Subsequently, we may follow the proof of N suc - A(t).
theorem 4.2 for these cases. Q.E.D. i i E

Mor over, we assume that for all nEN, tEZxRn-l and4.6 Theorem UERa ,

Given the assumptions of corollary 4.4 are q , = n-tu , (25)
satisfied. Then for all toEo', (tt) is a which, together witk (241 and (i, for all
semimartinaale strong Markov process, and its iGN-M, implies that if E GM then (Et) in R+X .
extended generator, 4, is given by: Substitution of (24) and (25) in (23.b,c) and

Af - tf + I f , for all fE3(A), subsequent evaluation yield
where Z and 7+ are those given in proposition 2.3,
while the doma4nx-f A s: dt1 t - m+ 4 ioX(iEt.) 9 u*t. < i 0X(iEt -)]•
D(d) - (f G_ 4,,-U)NC (OUj); Y+f(t)-O all EELQ). £ 11

ProoS: Similar to the proofs of theorem 3.3 and ._ •.(-t.) dvt(dulxRd), (26.a)prpsto- .with: Us ul-kh(ts),,,...
proposition ' .3. for some integer k such that 0 < u s A( s)

d.tt - 1(tt)dt + (tt)dwt + - 1 d V(ft_,u) q(dtdu) +
.T+ d (Eit,t-,) dvt(Rxd), (26.b)

In this section we explicitly consider 
the hybrid t

state space situation for a system of the form Yt(U) X((UI!A(ts_)]U[F(ts.)90]) p(ds,du),
(2.a,b), in such a way that there is no need of o (ds )
assuming a particular F or A. As such, all jump all Borel UCR+xId, where underlining of a vector
reflecting boundary results of the former sections refers to all, but the first, components of that
fit into the results of this section. For ease of refto.
notation and interpretation, we rewrite the SDE form vector.
(2.a,b) by replacing the Poisson random measure, p,
by a multivariate counting process, -r, such that Assumitions
the pathwise uniqueness of (2)'s solution is
preseryed. We do that by defining, for all Borel AA Given, for all 1,Rn-0* and uER+xRd ,

't(U) " X( [Ul<A(ts_)] U [(1s.)0 ] ) p(dsdu) 01(',,) " 10,i'

(23.a Fop m(du) - dulxi(du).

(23.a) For all keN there exists a constant , suchand then rewriting (II) as that for all E +131.
dtt - a(tt)dt + 0(tt)dwt +. t d I *it.,u) q(dt,du) - , X(,,) (Iti1 + d IZ(,,,)I M(dl)] Mk .
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Abstract

A realistic stochastic control problem for hybrid systems with Markovian
jump parameters can have the switching parameters in both the state and
measurement equations. Furthermore, both the system state and the jump states
are, in general, not perfectly observed. Currently there are only two existing
controllers for this problem. One is based upon a heuristic multiple model
partitioning (MMP) and hypothesis pruning. The other utilizes the entire
future tree of models, and is called the Full-Tree (FT) controller. The
performance of the latter is superior to the former and their complexities are
similar. In this paper we present a new s'ochastic control algorithm for
stochastic systems with Markovian jump parameters. This control algorithm is
derived through the use of stochastic dynamic programming and is designed to be
used for realistic stochastic control problems, i.e., with noisy state
observations. This new scheme, which is based upon the interaction of r (the
number of models) model-conditioned Riccati equations, has a natural
parallelism and is straightforward to implement. The state estimation and
model identification is done via the recently developed Interacting Multiple
Model algorithm. Simulation results show that a substantial reduction in cost
can be obtained by this new control algorithm over the MMP scheme.
Furthermore, the performance of the new algorithm is shown to be practically
the same as that of the FT scheme even though the new scheme, which has a fixed
amount of computations at each step of the recursion, is much simpler to
implement than both the MMP and FT algorithms.

Reasearch sponsored under Grant AFOSR-88-0202.



(CBcon)(890907) 2

1. Introduction

An important problem of engineering concern is the control of discrete-time

stochastic systems with parameters that may switch among a finite set of

values. In this paper we present the development of a new controller for

discrete-time hybrid jump-linear Gaussian systems. Here the state and

measurement equations have parameter matrices which are functions of a Markov

switching process. The jump states are not observed and only the system state

is observed in the presence o. noise.

This new controller has control gain coefficients that can be generated

off-line and is designed to be real-time implementable. It belongs to the

open-loop feedback (OLF) class [B31 - incorporation of the dual effect would

have precluded the above two rather important features. To date, there is no

dual (closed-loop) controller for jump-linear stochastic systems with noisy

observations. Some preliminary work along these lines has been reported in

[C31.

In addition to presenting a practical control algorithm we also point out

an interesting thenretical phenomenon. We show that there is a natural

connection between the Interacting Multiple Model (IMM) state estimation

algorithm [BI, B51 and the control of jump-linear systems. Thus the IMM is the

state estimation algorithm of choice for use in these types of control

problems.

Systems which belong to the jump-linear class are found in many areas.

Systems of a highly nonlinear nature can be approximated by a set of linearized

models [Mi, VI, V21. A failure in a component of a dynamical system (or

subsequent repair) can be represented by a sudden change In the systems

parameters [82, Si, Wi]. Also .economic problems, which can be modelled by

parameters that are subject to sudden changes due to shortages in Important
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materials [G1] belong to this class. And, as is noted in [M21, there also

exist applications to the design of control systems for large flexible

structures in space.

There has been an extensive amount of work done in this area and on the

related problem of controlling stochastic dynamic systems with unknown,

time-invariant parameters. We refer the reader to [TI) and [1l1 for a list of

references and a discussion of their scope and applications.

More recently in [S21 a feedforward/feedback controller was presented for

the continuous-time problem with a completely observed system state and where

the "modal Indicator" is measured with a high quality sensor. In [M21 the

continuous-time jump-linear problem is considered where the system state and

"modal processes" are perfectly observed. The optimal regulator was obtained

and notions of stochastic stabilizability and detectability were introduced to

characterize the behavior oF the optimal system over long time intervals. In

[M31 the continuous-time jump-linear problem with additive and multiplicative

noises and noisy measurements of the plant state was considered with the plant

mode assumed to be perfectly observed.

A sufficient stability test was given in [Ell for checking the asymptotic

behavior of the error introduced by the averaging of hybrid systems. In [M41

the continuous-time jump-linear problem with non-Markovian regime changes was

considered. A control scheme was presented for the case of perfect

observations of the system state and plant regime.

In [C1] a discrete-time Markovian jump optimal control problem was

considered. The controller is for the case of perfect system state

observations and known form process (mode). They derived necessary and

sufficient conditions for the existence of optimal constant control laws which

stabilize the controlled system as the time horizon becomes infinite. Through
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t examples they showed the Interesting result that stabilizability of the system

in each form-is neither necessary nor sufficient for the existence of a stable

steady-state closed-loop system.

In [YI] a discrete-time system with perfect state and mode information was

considered. A controller was presented which is stabilizing in the mean square

exponential sense.

As pointed out in [Gil, we generally cannot determine the optimal

jump-linear quadratic Gaussian closed-loop control law analytically even for a

two-step problem. In order to compute the optimal control, extensive numerical

search methods must be employed and thus one would like to find simpler

suboptimal control schemes.

Currently there exist two implementable controllers for this problem

(switching parameters in the system state and measurement equations and noisy

state observations). One of them is the one discussed in [T1 and is of the

OLF class. This algorithm is based upon a heuristic multple model

partitioning (MMP) and hypothesis pruning. The other one is the Full-Tree (FT)

scheme developed in [C2].

The RMP approach, being conceptually simple and straightforward to

implement, is a reasonable choice for the time-invariant unknown parameter

problem [Li], and, as shown in [TI], it works well for applications involving

switching parameters In the state measurement equation only. For the

non-switching parameter problem the operating mode is determined to a high

probability in a relatively short period of time and then the MMP approach

gives the linear quadratic Gaussian optimal control.

For switching parameter problems a different situation exists. Because of

switching, the operating mode may never be determined with high probability.

The approach taken here to derive a suboptimal control scheme is
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to start with the stochast[- dynamic programming Formulation. By utilizing

dynamic programming and making appropriate suboptimal assumptions, a recursion

is derived and the use of numerical search methods has been avoided. We thus

have developed a multiple model control scheme which has the following

desirable properties: (a) it gives the optimal last stage control, (b) it

utilizes the IMM state estimation scheme, (c) it has the same property as the

MMP and FT controllers in that it gives the optimal linear quadratic control

under the assumption of a perfectly known model history sequence (which is,

however, an unrealistic assumption for this class of problems), and (d) it is

implemented naturally using parallel processors.

For comparison purposes we implement the "switching parameters in the

system state equation" controller, proposed (but not tested] in [TI], and the

FT scheme of [C21. We show via examples that a statistically significant

reduction in cost can be achieved through the use of our controller over the

MMP scheme. Also our new algorithm is shown to have practically the same

performance as the FT r, ntroller, which was shown in [C2] to be significantly

superior to the MP algorithm. But, since our new algorithm has a fixed amount

of computations for each step of the backwards recursion, as compared to the

exponentially growing amount of computations for the FT scheme, it is much

simpler to Implement.

The paper is outlined as follows. In Section 2 the problem formulation is

given. In Section 3 the connection between the IMM state estimation algorithm

and the control of multiple model systems Is shown. In Section , we derive the

new control scheme which is suitable for real-time Implementation. In Section

5 we use simulations to compare the MP control algorithm with the FT

controller and with our recursive real-time Implementable scheme.
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2. Problem Formulation

The problem to be solved is discussed next. We Look the pragmatic approach

of starting with the available mathematical and statistical tools found to

yield success in solving similar problems of this type in the past (i.e., use

is made of the stochastic dynamic programming method and the total probability

theorem, etc.). As we shall see, not only does this practical engineering

approach yield an improved multiple model control algorithm, but it also leads

to the interesting theoretical observation of a direct connection between the

IMM state estimation algorithm and jump-linear control.

It is desired to find a sequence of causal control values to minimize the

cost functional

N-1

J = E(CfO)}=E(x(N)'Q(N)x(N)+,Z 1x(k)'O(k~x(kJ+u(kYR(k~u(k)I (2.1)
k=O

where 0(k)->O for each k=O,1,...N and and it is sufficient that R~k)>O for

each k=O,1,...,N-1.

The discrete-time system state and measurement modeling equations are

x(k) = F[M(k)lx(k-1) + G[M(k)lu(k-1) + v[k-1,M(k)] (2.2a)

z(k) = H[M(k)]x(k] + w[k,M(k)] k=O,1,2,... (2.2b]

where x(k) is an nxl system state vector, u(k) is an pxl control input,

and z(k) is an mxl system state observation vector. The argument M(k)

denotes the model "at time k - in effect during the sampling period ending at

k. The process and measurement noise sequences, v[k-l,M(k)] and w[k,M(k}], are

white and mutually uncor),-elated.

The model at time k is assumed to be among a finite set of r models

Mtk) e (1,2,...,r) (2.3)

for example
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F[M(k)=J) = F. (2.4)

v[k-1,M(k)=j] - Nbi,V I (2.5)

w(k,M(k)=j] - N[,\j,Wj] (2.6)

i.e., the structure of the system and/or the statistics of the noises might be

different from one model to the next.

The model switching process to be considered here is of the Markov type.

The process is specified by a transition matrix with elements p,,. Let

I Ik== [z(O),z(i),...,z(k),u(O),u(1),...,u(k-1)] (2.7)

denote the information available to the controller at time k (i.e. the control

is causal).

I
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3. The Last Stage Control and the IMM Estimator

An integral part of any control algorithm for this class of problems is the

system state estimator. In this section we show that there exists an

interesting connection between the control of multiple model stochastic systems

and the IMM system state estimator [BI, B51. To this end we start by solving

for the optimal control at time N-i . The optimal control at time N-I, is the

value of u(N-l) which minimizes

J(N-1) = Ex(N-1l'O(N-llx(N-l]+u(N-l)'R(a-1]u(N-tl+x(N)'Q(Nlx(N)I - 1)

-r E(x(N-1)'Q(N-Ix(N-1I)+u(N-1)'R(N-I)u(N-1)
j=t

+ x(N)N'Q(N)x(N)N-1,M(N)=j}P(M (N)=1N - ') (3.1)

Define

i.(NIN-11 4 P(M(N)=jllN- 1) (3.2)

and use the state equation (2.2a) and (2.4), (2.5) in (3.1) to get

J(N-1) = Z Efx(N-1)'[Q{N-I)+F.'Q(N)Fj]x(N-I)+2u(N-1)'G 1 '0(N)F x(N-1)
j=1

+ (N-i)' [R( N-i) j'Q (N)Gl1u (N-I) JININM (N) =j) pi(N IN-i)

r, +Z tr[O[NIVItL.(NjN-I] (3.3)
,j~I

Now taking the gradient of (3.3) w.r.t. u(N-i) and setting it to zero yields

u(N- = -RN-)+ GQ(N)l (NIN-1

S: GQ(N)FjE(x(N-IINM(N) =J) (IN- (3.4)

j=t



(C~con)1890907) 9

Notice that

E(x(N-1) IN-IM (N)=j)= E(x(N-1 )IN-IM (N)=J,M[N-1)=l)

where, since M(N)=j in the first conditioning is irrelevant (see for example

(8111, the expectation inside the summation is

E(x(N-1)1!41,M(N)=i,M(N-1)=i) =E(x(N-1 4lN-1:M (N-11=i)

Using the following definition

and (3.6) in (3.5) yields

E(x(N-1 (N,(Nki = j(N-1IN-I)v.(N-1jN-Il

which is the IMM mixed initial estimate [B1, 1351.

Thus using (3.8) in (3.4) we get

us(N-11 -[R(N-~I. GQNV(j-)-

r-
2:G-(N)FR'jN-lj -1) (NI -1)(3.9)
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4. The Parallel Control Algorithm (PCA)

in the Fol'lowing we will derive a backwards recursive method for obtaining

control gain parameters that minimize an approximation to Jf[k,lk), which

is defined to be the optimal cost-to-go from time k to the end. Using this

definition and (2.1) the Bellman equation is written

J'(k lk] _ min E(x(k)'Q(k)x(k)+u(k)'R(klu(k) + Jfk +,lk+1)Ilk} (1.1)

The method is based upon the backwards propagation of r model conditioned

matrix Riccati equations. Each of these r equations is propagated by

utilizing a probabilistic combination of the Riccati matrices obtained in the

prior iteration. Thus at each iteration of the backwards recursion

computational requirements are Fixed and the scheme has a natural parallelism.

In order to obtain a control based upon the propagation of r Riccati

equations we First denote the optimal cost-to-go at time k+l, given that

M(k+2)=i, as

J*[k +1,lk+1} ;2L min E~x~k+l}'Q~k+l~x~k+l)+u~k+l)'R~k+l)u~k+1}
u(k+l)

+ J(k2k+2 )I2Ilk+1,M(k+2)=i} (4.2)

The conditioning with a time k+2 model is used because this is the model

starting Immediately after time k+l - see (2.2). These model-conditioned costs

are used to approximate the optimal cost-to-go in (4.1) as follows. The total

probability theorem is used as follows

E(J(k+ I,lk+1)jlk} = ('(~ rkl . 1+2ji,Ik}p(M(k+2j=iIl k) (4.3)i~1

We obtain our approximation of (4.3) by replacing the optimal cost-to-go, which

is a minimization of an expectation which has "smoothed out" M(k+2), with the

model-condltloncd costs-to-go [which has M(k+2) In the conditioning as
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indicated In (4.2)1 as follows

Z E(J(k+1,1k+1)IM(k+2)=i,ik}P(M(k,2)=i1lk) (4.4)
M~

Using (4.4) arnd (4.3) in (4.1) one obtains

Js(kik') z' i [E(X(k) 'O(k)x(k) + U(k)'R(k)u(k)Iik)

r I~kll )il~ k+ E(Ji'(k+1, )M(k+2)= l~(M(k+2)=i~lk ~5)

The cost-to-go from k+1 starting with M(k+2)=i is

J*(k+ ,Ik~l) = min E( x(k+11PO(k+I~x(k+1) + u(k+1)'R(k+1)u(k~1)
u(k+1)

+ J*(k+21k+2)!C+1,M (k+2)=i)

r E(J"(k+2, Ik+2) Ilk+I,M (k+2)=iM(k+3)=j)

P(M(k+3)=j-,Mfk+2)=i, k+1 )1 (4.6)

where a similar method to the approximation technique that led to (1.5) was

used to obtain (4.6).

In order to obtain a recursion one can make the following assumptions

J (k+2,k+2j E(x(k+2)VPj(k+2)x(k+2) I k+2,M (k4.3)=j ) + Ot j(k+2) (4.7)

and
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Z E(E[X(I+2)j(k+2)X(k+2)k+.M(k+3)=jI I +, M(k+2)=i,M(k.3)=j p.

z E(X(k+2VI ZPi(k+2)P..1X(k2)l ,(k+2)=i1
j=1

=EkX(k+2J'Si(k+a2)x(k+2) I I,M (k+2)=i) (4.8)

where

r

j=1

and furthermore assume (x,(k+2 ) is independent of u(k+1]. With (4.7),

(4.6) becomes

X(k 1,1k41 ) _minIE~x(k+)'O(k+1)x(k+1) + U(k+IV'R(k+1)u(k+1) I k+lM (k.2)=i}

" Zj E[E[x(k+2)VP,(k+2)x(kJ+2,M(k+3)=i]

" Oe (k+2) IIk+, Mfk+2)i,M(k3)=j~pI (410

Now using (4.8) and (2.2a) in (4.10), and taking the gradient w.r.t. u(k+1)

and setting to zero yields

u1(k+1) =-[R~kl, + G.S,(k+2)G6tI 6!S,(k+2)F, x0'(k+1) (.1

where once again we see the 1MM mixed initial estimate showing up. Thus, using

Ji (k ,Ikl) - E(x(k.1)'Pi(k+l)x(k+1)fl lkI,M(k,2) = 1) + oXi(k*1J (4.12)
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where

Pi(k+1) A Q(k+l) + F Sj(k+2) - S(k+2)G[R(k+) + GSj(k+2)G ij

G'S(k+2)F', i= r (4.13)

P(N) = Q(N] (4.14)

O~ik+0 A tr[1D1(k+tl] + 2: Elm i(k+2)k1l, M(k*2)=,M(k*,3)=J it.. r (.5
j:t

aik~o(4.16)

3(k+& S(N-)V i + F' Sj(N-I)6 i R(k+l) +G'Sk+2)Gji

SG'Si(k+2)F i Z0I(k+lIlk+1) i=1...r (4.17)

Z° (k+lk+1) _ Cov[x~kl)Ilk+I,M k+2)=il

We can see now that the assumption that (x, is independent of u,

i=l,2,...,r, was made to avoid the implications of the dual effect. Note that

the coefficients (4.13) and (4.14) are computable off-line.

Using (4.12) in (4.5) (see Appendix) and solving for the control which

minimizes the approximate cost, one obtains

u PCAk)= -iR(k)+Z[GP(k+)Gj jji(k+1Ik) ]P(Mk+21=i I lk)i j i j i I"

Z[GP~k1FRI~~ (klkj(~+)i l k=O,...,N-2 (4.19)

where the cost matrices follow from (4.13) and (4.9). Also note that the

probabilities P(M(k+2)=lIlk) are calculated using the elements of the Markov

transition matrix and the time k conditional model probabilities (see

Appendix).



(CBcon)(Sg9o07) 14

Summarizing, the controller is given by (4.19) For all but the last period,

for which it 's given by (3.9).

We note that the resulting algorithm is real-time implementable: its

complexity is linear in the number of models compared to a standard LO

controller. We also note that there is a similarity between the form of (4.19)

and that of the optimal linear quadratic control, and that x is

obtained directly from the IMM estimator.

Note that the r Riccati equations (4.13) are coupled via (4.9) - which

is a mixing or interaction of the results from the previous iteration. These

equations can be implemented naturally with r parallel processors that

interact via (4.9) after each iteration. This and the fact that the IMM is

also parallelizable in the same manner motivates the name PCA.

Finally we note that if we were to take into account the dual effect the

complexity of the algorithms would have precluded real-time implemenLability.
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S. Simulation Results

The algorithm developed in Sec. 4 is used to control the state trajectory

of a system that can jump between two models. The performance of this

algorithm, given by (2.1), is compared to the cost obtainable by using the MMP

controller discussed in [TI) and the FT scheme derived in [C21. The MMP and FT

schemes both take into account the entire "tree" of future model sequences.

However these algorithms differ significantly in their derivations. The MMP

control is computed as a probabilistically weighted sum, over all possible

model sequences, of the "model sequence" optimal controls. In the FT scheme

the expected optimal cost-to-go is approximated as a probabilistically weighted

sum, over all possible model sequences, of the "model sequence" expected

optimal costs-to-go. In order to obtain a meaningful comparison we use the

rigorous statistical analysis technique presented in [B4, W2].

The control of a double integrator system with process and measurement

noises is considered with a gain failure. The two possible models are given by

the Following system equation

xi(k+IJ = 0I T x(k + [0 u(k) + [T/2] v(k) i=1,2 (5.1)

with measurement equation

z(k) = [1 01 x1(k) + w(k) (5.2)

The models differ in the control gain parameter b'. The process and

measurement noises are mutually uncorrelated with zero mean and variances given

by

E[v(k) v(j)J - 0.16 6kJ(5.3

and
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E[w(k) w(j)] kj 5.)

The control gain parameters were chosen to be b1=2 and b2=0.5.

The Markov transition matrix was selected to be

1 O.8 0.21 (5.5)

0.I 0.9

For this example N=7, and the cost parameters R(k) and Q(k), (see (2.1)), were

selected as

R(k) = 5.0 k=l,2,...,N-1 (5.6)

and
- -0.0 0.0"

0[0) 0.0 0.0
2.0 0.0

0t) 0.0 2.0
3.0 0.0

Q(2) 0.0 3.0

'1.0 0.0
0.0 4.0 (57)

O{4 5.0 0.0
0.0 5.0

0(5) 8:8
Q(6) 5.0 0.0

0.0 5.01
0(7) 20.0 0.0

.0.0 8.0

where the last matrix, Q(7), reflects our desire to drive x,(7) vigorously to

zero. The sampling period for this example was T=1.0.

The real system was initialized with x(0)=[30.0, 0.01' and a random

selection was done for choosing the initial model with P(M(O)=il=0.5, i=1,2.

The Kalman filters each received an initial state covariance of

P(OIG) = 1 .0 1.01 (5.8)

and the initial state estimate was based on Initial noisy measurements

[ 2(00) 1 [ z {O) ] (5.9).

L E 0IOz(o) - zt-1)

where z(-1) = 30.0 + w(-I) and z(O) - 30.0 + w(O).

Statistical tests were made on the results of 50 Monte Carlo runs. Sample

means and variances of the cost defined In (2.1) were computed for the MMP, FT,

PCA, and "known model-history" (i.e., the unrealizable optimum linear-
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quadratic) controllers.

Table I contains the results. The FT and PCA algorithms show a clear

reduction in cost as compared with the MMP scheme. However in order to provide

a rigorous argument that the actual performance is ordered as Table I indicates

we apply the statistical test presented in [B4, W21.

Table II contains the results. The sample mean A and the standard

deviation a of the means of the cost differences, with
.PCA .FT rMMP rFT -MMP .PCA

realizations C -Ci, C -Ci, and C M -C1 , for the i-th run of each simulation,

are shown. The hypothesis that the FT controller is better than the MMP or PCA

schemes can be accepted only if the probability of error oe is less than, say,

I percent. Then the threshold against which we compare the test statistic

A/a- is [L=2.33. This test statistic has to exceed the

threshold in order to accept the hypothesis.

The results given in Table II indicate that the FT and PCA controllers

perform significantly better than the MMP controller for this problem. The

estimated improvements (decrease in costs) of 70. and 697. respectively are

statistically significant. However the hypothesis that the FT controller is

better than the PCA controller, when using V=2.33 or li=1.65 (ot=5%),

can not be accepted. The estimated improvement of 17 is not statistically

significant and their performances are, thus, practically the same.
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TABLE I

SAMPLE AVERAG;E COSTS AND STANDARD OEVIATIONS

K ow-nMMP FT pCA Model-History
Sample Mean 19,519 6,063 6,141 2,647SaF e*tndaJr 23446 1,404 ,3q3

TABLE [I

STATISTICAL TEST FOR ALGORITHM COMPARISONS

Test Estimatedstatistic cost Reduction

P CA -FT 78 82 .95
MMP-FT 13,156 3,316 4.1 70
MMP- _PCA 13378 3,298 4. 69
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6. Conclusion

The development of a new control algorithm for discrete-time hybrid

stochastic systems with Markovian jump parameters has been presented. This

scheme has off-line computable control gain parameters, and is implementable on

parallel processors in a natural way. This controller is based on a fixed

number r (the number of models) of coupled Riccati equations and is suitable

for control problems with finite end-times. This scheme uses the IMM state

estimation algorithm. We show that. there is natural connection between the IMM

state estimator and the control of jump-linear hybrid systems.

From the example it is seen that this scheme can achieve a statistically

significant reduction in cost when compared to the scheme of [T1]. Also we

showed that the present controller and the controller of [C2] have

statistically indistinguishable costs. But our new controller has a fixed

amount of computations at each step of the dynamic programming recursion

whereas the schemes of [C21 and [Ti] have an exponentially growing number of

computations. Thus our new controller is seen to compare favorably to both the

[Ti] and [C21 schemes.
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Appendix

1. Derivation of (1.19)

With (1.121, (4.5) becomes

Jsfk lk] -- (min [Exk'Qkxk + u(k)JR(klu~k) I k)

+rE(E~x(k+I)#Pi(k1)x(k+)lk+1M (k+2)=

+ (Xi(k+11 JM(k+2 )=i,lk) P(M(k+2friI lk)J (A.1)

Use the smoothing property or expectation, use (2.2a), then use the total

probability theorem in (A.1) to get

J*fklk) -- rii [ E(x (k)'Q (k) x k) + u (kVR (k) u(k) Ilk)

Defining

and noting that

E(xfk)Ilk,Mfk.2)=i,M~k+lkij) = E(x(k) IlkM (k+1)=j)

= Oj kk (A.4)

[see (3.8)1, and taking a gradient w.r.t. u(k) of (A.2) and setting to zero

yields u PA (k) in (4.19).
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II. Calculation of P(Mk+2)=l)Ilk}

Using Bayes' formula one can write

P(M(k+2)=i)Ilk) = XP(M(k+2)=i)IM(k+1]=j,lklP(M(k+)=j)IIk)j=1

r r r MP) ,)I kPEi P(M(k+p =ll E P ( A.5)

j=1 j j=1 j =1 i

where the conditional model probabilities PM~klIlk), =1 .... r, are

obtained from the IMM estimator.

.. ... .
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Abstract

The performance of tracking and prediction systems of a maneuvering target

can be improved by using additional (and unconventional) measurements of its

apparent modes, typically provided by an imaging sensor. A model for the
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1 Introduction

There are many applications where the state dynamics are disturbed by
random point processes : in fault-tolerant process control for example the
input-output plant model is contingent upon the indicator of the failure
regime. Similarly a tracking system for maneuvering targets needs to be
reconfigured when the mode of the encounter switches from level flight to
an evasive maneuver.

In this paper we study a control problem for the class of systems, often
called "hybrid systems", that has been proposed in the literature to describe
such applications. Hybrid systems are characterized by their product state
space. To the usual Euclidean space (R") we append a finite set (S =
{,2, ...,N}): on R" we can model the basic dynamics (e.g. position and
velocity of the target for a tracking system) and we use S as the list of
possible regimes of operation (e.g. with N = 2 the maneuver/no maneuver
mode of a tracked target). The regime jumps on S are modeled by a Markov
chain and the dynamics on R" obey a differential equation, the coefficients
of which are contingent upon the regime.

The study of h) brid systems can be traced back to the early sixties (Flo-
rentin, 1961, Krasovskii and Lidskii, 1961). The Jump Linear Quadratic
problem was introduced by (Sworder, 1969): the state dynamics being lin-
ear, an optimal regulation problem is posed with respect to a quadratic
performance index. For completely observed state and regime, the opti-
mal JLQ regulator has been obtained independently by (Sworder, 1969)
and (Wonham, 1971) from maximum principle and dynamic programming
points of view. Motivated by various applications, significant research ef-
forts have been devoted to hybrid systems theory : the structure of linear
hybrid systems has been analyzed in (Chizeck, 1982, Mariton, 1988), re-
fined models have been considered in (Sworder 1973, 1980, 1982) and the
theory has also been extented to the discrete time setting (Griffiths and
Loparo, 1985, Chizeck et al., 1986, Ezzine and haddad, 1988). Surveys of
available results are given in (Sworder, 1976, Mariton, 1989).

More recently attention has been focused on the JLQ problem with
partial observations, i.e. the case where the state and/or the regime is only
partially measured through noisy sensors. The most general setting is that
of (Caines and Chen, 1985) and several approximations have been proposed

2
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(Sworder and Chou, 1985, Fragoso, 1988, Mariton, 1988).
A major difficulty is the dual control phenomenon : due to the couplings

between the state and the regime, the optimal control has to balance its
proper regulation objective with the need to excite the plant to gain more
information on the unobserved regime of operation. In this paper we present
a new approximation scheme based on an averaging of the exact system

dynamics.
The rest of the paper is organized as follows. In section 2 we formulate

the JLQ problem with partial observations and the main result is presented
in section 3 in the form of the optimal solution of an averaged JLQ problem.
Finally an example illustrates the solution obtained.

2 Problem formulation

We consider the JLQ problem as formulated in e.g. (Sworder 1969, Caines
and Chen, 1985). The plant state xteR" obeys

dgt = A(r,)x dt + B(rt)udt + D(rt)dw, (l)

where utcR'n is the control vector, wt a normalized Brownian motion, and
A, B matrices of corresponding dimensions. These matrices depend on the
current regime of operation, rteS = {1,2, ..., N) and we shall often use an
index to denote the regime, e.g. A; for A(rt) when rt = i. The regime
jumps are described by a Markov chain

de, = 1l', + din1  (2)

where Of is the regime indicator (Oe{0, 1}, t - 1 when r, = i, 0 other-
wise), mt is a martingale w.r.t. to the underlying system a-algebra and
1l (lr=k);.Niv is the matrix of transition rates. The role of l1 is better
ut:d..r,:tod by observing that (2) implies

=riidt + o(dt) i 0 j
J{rt+,ft =r,= } = I + 7ridt + o(dt) i j

4, e':,'-* of II are thus, the transition rates of the regime process. We
shall asja that xt is exactly observed but that the regime rt is measured

3



through a noisy scalar channel

dy, = h(r,)dt + dvt (3)

where v, is a Brownian motion with intensity a2. it is assumed that v, w
and m are mutually independent. The observation a-algebra available at
the regulator is thus XtvYt where Xt = a- {x,,s < t} and Yt = a- {y,,s <

t}. The best regime estimate in the sense of minimal mean square error
would then be E{0,IXtvYt}. However the control ut influences, through
(1), the information richness of Xt and it is clear that using E{tIXtvY}
would lead to a dual control problem. We shall thus assume that the direct
measurement (3) is of high quality so that we can take 0, = E{(0tYj}
without a significant degradation of the regime estimate.

This assumption can be understood in terms of the target tracking ap-
plication : when the target maneuvers it takes some time until the position
and velocity (= components of x,) reflect the change in acceleration while,
on the contrary, a direct sensor like (3) (maybe the output of an imaging de-
vice) can immediately signal a transition (maybe through a sudden change
of the apparent dimensions of the target). It is then interesting, especially
during the short transients where fast reconfiguration is required, to disre-
gard the slow information channel of Xt and to base the regime estimate
solely on Yt. Obviously there are situations where this assumption is not
acceptable and, by enforcing it, we restrict attention to a special class of
hybrid systems.

The practical control objactive is to stabilize x, near zero without spend-
ing too much control and this can be achieved by minimizing the perfor-
mance index

J = E{] (f ' Q + URu)dtxI = x = 0} (4)

The weighing matrices Q (> 0) and R (> 0) are regime dependent (Q =
Q(rt), R = R(r,)). Technical conditions are necessary to ensure that min-
imizing (4) indeed stabilizes the system. In the JLQ setting some care
is required in defining the most accurate notions of stabilizability (con-
trollability) and detectability (observability). This was pursued in (Ji and
C11izeck, 1988, Mariton, 1986) but here we shall take the simpler condition

4



that the pairs [Ai, Bi] and [A, Q"'21 are, respectively, controllable and ob-
servable in the usual deterministic sense. The class of admissible control
policies U is the class of feedback laws ut = U(x,, y., s _< t) where U satis-
fies the usual smoothness conditions (Wonham, 1971). The problem to be
solved is thus

min J (5)

The partially observed problem is transformed into a completely observed
one in the augmented state (x$, ')', where it is recalled that we use the
approximation E{OtjYt} ; E{¢,]XtvY} for .

3 The averaging approximation

For the regime dynamic equation (2) and the measurement channel (3),
the estimate t = E{kIY,} is given by the following stochastic differential
equation (Wonham, 1965, Wong and Hajek, 1985)

d , = ' ,dt + c( 1 )d , (6)

where the innovation process is d& = dy, - II' ,dt with H = [hl,..., hN)l'.

The filter gain G(4') is

G(Z) = (diag( t) - , ')Ho-

As explained above, we do not pursue the exact solution of (5) but rather
look for an approximate solution with a strong practical appeal. We trans-
form the problem into a completely observed one as follows.

First the dynamics are averaged into

dze = Atxtdt + B tutdt + DAdwe (7)

with
N

A= E{A(rt)IY} = ¢A

N

t= E(B(r,)iY,} ,
i=5

.I5
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A E{D(rt)Ye} L Z qjDj
i=1

Similarly the cost matrices are replaced by
N

Q1 E{Q(rt)IYt} = L OtaQi
i=I

N

, E{R(rt)IY,} = $tR,

This averaging provides an acceptable approximation of the original prob-
lem when the regime estimate based on (3) is a good regime indicator.

For the averaged system (7) we have a completely observed optimization
problem that we solve through dynamic programming (Wonham, 1971).
T' t cost-to-go is defined as

V(tx, ) = Ef(x-Q,x, + u,?u,)dsI x = x, (8)

The infinitesimal generator is

av a1V,(t, X = X = ) = -- (t, X, ) + T(t, x, )'(Ax + Pta)
atx
av
+-a (t, X , 0)'rT'0 (9)

1 , 2V 1 O 'V
Ca') + -trL5-

2 ao~aofp V 2 (Dx '9x
We then have the following result:

Theorem :
The solution of the optimization problem for the averaged model is

u; = -R-''Ax, (10)

Where the n x n matrix A satisfies a Cauchy equation

dA- aA =A'A + ,AA - A Df?-' P'A +
at

+'v OA +A

+ C1 G t) j +i=G

6



with A(tf,$t,) = 0.
The corresponding optimal performance is

J = x,.,A(to,, t")Xo, + A,(to, 4 ,,,) (12)

where the scalar It satisfies

-~ Irt - a. AL9t =tr(b'AD) + " l', + tr(G Gu2) (13)

with #t(tf) = 0.

Proof : see the appendix.

This result calls for the following remarks.

Remark 1
The obtained control feeds back both the measured state x, and the

regime estimate t Lhus providing a continuous adaptation to regime vari-
ations. Under general conditions on the continuity of the coefficients of (6),
(7) the Cauchy equation (11) has a non negative solution that is uniformly
bounded over [t,,, t1f x R ' (Fleming and Rishel, 1975).

Remark 2
A similar averaging approximation was reported in (Lee et al., 1985) for

the case where the random influence on the model parameters is described
by a Brownian motion rather than our Markov chain.

Remark 3 :
In previous studies (Sworder and Chou, 1985, Mariton, 1988) an ap-

proximate solution was derived for the exact original optimal control prob-
lem. On the contrary the above theorem provides the exact solution to
a modification of the original problem obtained through an averaging ap-
proximation. Still another approach is possible whereby the solution with
a measured regime (Sworder, 1969) is averaged with weights given by the
a posteriori regime probabilities. It was shown in (Fragoso, 1988) that
this provides the optimal solution to a modified problem with a different

quadratic cost.

7



4 Example

To illustrate the results of § 3 we consider a scalar system with two regimes

dx, = a(r,)x~dt + b(r,)utdt + d(r,)dwt

and we denote by aj, bi and d, the values of a, b and d when rt i(i = 1,2).
The transition matrix of the regime Markov chain is

rI 711 7122

The averaged parameters are written

&=(a, - a.,) I + a2

= (b, - b.,)4,, + b

J = (d, - d.),, + d.,

with tl = E{rt = lIY}.

From the above theorem we then obtain

u; (b,-. b,)O,, + b2A(,)Xt (14)
(r1 - r: ,+ r.

where A(&t) is solution of the Cauchy equation

aA
Tt = (q, - q2)0 1 + q"2 + 21(al - aq) , + aIA

I(b, - b) t1 + b212 A2 ++a~( A (s
__ . _ .- ________

+Q - (h,1 -h&) 2 a2A

with A(t.,Sift) = 0.

The possibility of regime transitions is reflected in the dependance of A
on &. The implementations of (14), (15) requires the on-line solution of
a two point boundary value problem : (15) is integrated backward in time
with coefficients depending on regime estimates.

8



5 Conclusion

We considered an op.imal control problem for a Markovian jump linear

system. A new approximation was proposed based on an averaging of
the regime dependent parameters based on a high quality regime estimate.
This transformed the original partially observed problem into a completely
observed one.

Future work will analyze the stability of the original system under the

proposed control law and it will be interesting to analyze the error between
the true system and the averaged one.

Acknowledgments :
Part of this work was done while both authors were affiliated with Labo-

ratoire des Signaux et Systb.mes, CNRS-ESE, Gif-sur-Yvette, France, under
the direction of Dr. P. Bertrand. His guidance is gratefuly acknowledged.

9



6 References

Caines, P.E., and Chen , H.F., 1985, IEEE Trans. on Aut. Control, 30,
185.

Chizeck, H.J. , 1932, Fault-tolerant optimal control, PhD Dissertation,
Mass. Inst. Techhnology, Cambridge.

Chizeck, H.J., Willsky, A.S., and Castanon, D.A., 1986, Int. J. Control,
43, 213.

Ezzine, J., and Haddad , A.H., 1988, Error bounds in the averaging of

hybrid systems. Proc. 27th IEEE Conf. Decision and Control. Austin,
pp.1787-179 1.

Fleming, W.H., and Rishel, R.W., 1975. Deterministic and

Stochastic Optimal Control , ( Springer-Verlag, New-York).
Florentin, J.J., 1961, J. Electronics Control, 10, 473.
Fragoso, M.D., 1988, Systems and Control Letters, North-Holland, 10,

3,9.

Griffiths , B.E.. and Loparo, K.A., 1985, Int. J. Control, '12, 791.
Krasovskii, N.N. and Lidskii, E.A., 1961, Aut. Remote Control, 22,

parts 1-111,1021, 1i1,11, 1289.

Lee, M.H., Kolodziej,W.J., and Mohler, R.R., 1985, Trans. Aerospace
Elect. Syst., 2, 594.

Mariton, M., 1986., Controllability, stability and pole allocation for
jump linear systems, Proc. 25th IEEE Conf. Decision and Control, Athens,

pp.2208-2209.
Mariton, M., 1988, Syst. Control Letters, 11, 393.
Mariton, M., 1988, Control of systems with imperfectly detected marko-

vian changes, Proc. 21st Asilomar Conf. Signals, Systems and Computer,

Pacific Gcove, pp.266-270.
Mariton, M., 1989, Jump Linear Control Systems , (M. Dekker, New

York).
Sworder, D.D.,1969, 16EEE Trans. Aut. Control, 14, 9.
Sworder, D.D., 1973, IEEE Trans. Aut. Control, 18, 355.
Sworder, D.D., 1976, Proc. IEEE, 64, 1219.

Sworder, D.D., 1980, J. Economic Dynamics and Control, 2, 233.
Sworder, D.D., 1982, IEEE Trans. Systems Man and Cyber., 12, 307.

10



; -,

Sworder, D.D., and Chou, D.S., 1986, Passive adaptation in control
system design, CT. Leondes (Ed). Control and Dynamic Systems, 24, 315.

Wonham, W.M., 1965, J. SIAM Control. Ser. A, 2, 347.

Wonham, W.M., 1971, Random Differential Equations in Control The-
ory, A.T. Bharucha-Reid (Ed.), Probabilistic Methods in Applied
Mathematics, Academic Press, New York, 2, 131.

Wong, E., and Hajek, B., 1985, Stochastic Processes in

Engineering Systems, ( Springer-Verlag, New-York).
Yuandong Ji and Chizeck , H.J., 1988, Optimal quadratic control of

jump linear systems with gaussian noise in discrete time, Proc. 27th IEEE

Conf. Decision and Control, Los Angeles, pp.1989-1992.

F

,,1



7 Appendix

We take a quadratic parametrization of the cost-to-go

V (t, x,, ,) = x' ,.A(1, $,)x, + /(t, ) (16)

The principle of optimality then gives

min,,{eCV(t,x,, $,) + + u '()u,)} 0 (17)

The partial derivative of the above expression w.r.t. u is

O~~ge)'aV-- (t, k,) 1-R 6,

so that
,U; : -f(,)- t ,) 0 X1.,, )

Using u; into Bellman's equation we obtain an expression for A F irst we
evaluate separately the following partial derivatives

a 'Yd,4,O

and

a2  X ,

I=1 i=1 ~~

Grouping terms in xzx, and constant terms we finally obtain (11) and (13)
of the theorem. The optimal cost (12) is theii deduced from the definition

of the cost-to-go at t = t,.
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